These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 16154868)

  • 1. Solving the heart mechanics equations with Newton and quasi Newton methods--a comparison.
    Linge S; Lines G; Sundnes J
    Comput Methods Biomech Biomed Engin; 2005 Feb; 8(1):31-8. PubMed ID: 16154868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-organized pacemakers in a coupled reaction-diffusion-mechanics system.
    Panfilov AV; Keldermann RH; Nash MP
    Phys Rev Lett; 2005 Dec; 95(25):258104. PubMed ID: 16384515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of transmurally varying myocyte electromechanics in an integrated computational model.
    Campbell SG; Flaim SN; Leem CH; McCulloch AD
    Philos Trans A Math Phys Eng Sci; 2008 Sep; 366(1879):3361-80. PubMed ID: 18593662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A finite volume method for modeling discontinuous electrical activation in cardiac tissue.
    Trew M; Le Grice I; Smaill B; Pullan A
    Ann Biomed Eng; 2005 May; 33(5):590-602. PubMed ID: 15981860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient fully implicit time integration methods for modeling cardiac dynamics.
    Ying W; Rose DJ; Henriquez CS
    IEEE Trans Biomed Eng; 2008 Dec; 55(12):2701-11. PubMed ID: 19126449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved numerical method for strong coupling of excitation and contraction models in the heart.
    Niederer SA; Smith NP
    Prog Biophys Mol Biol; 2008; 96(1-3):90-111. PubMed ID: 17881038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous and discontinuous propagation in heart muscle.
    de Bakker JM; van Rijen HM
    J Cardiovasc Electrophysiol; 2006 May; 17(5):567-73. PubMed ID: 16684038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation sequence as a key factor in spatio-temporal optimization of myocardial function.
    Solovyova O; Katsnelson LB; Konovalov P; Lookin O; Moskvin AS; Protsenko YL; Vikulova N; Kohl P; Markhasin VS
    Philos Trans A Math Phys Eng Sci; 2006 Jun; 364(1843):1367-83. PubMed ID: 16766350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A monolithic 3D-0D coupled closed-loop model of the heart and the vascular system: Experiment-based parameter estimation for patient-specific cardiac mechanics.
    Hirschvogel M; Bassilious M; Jagschies L; Wildhirt SM; Gee MW
    Int J Numer Method Biomed Eng; 2017 Aug; 33(8):e2842. PubMed ID: 27743468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: a model study.
    Kerckhoffs RC; Bovendeerd PH; Kotte JC; Prinzen FW; Smits K; Arts T
    Ann Biomed Eng; 2003 May; 31(5):536-47. PubMed ID: 12757198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fully coupled model for electromechanics of the heart.
    Xia H; Wong K; Zhao X
    Comput Math Methods Med; 2012; 2012():927279. PubMed ID: 23118801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of activation time on contraction force of myocardial tissue: a simulation study.
    Lu J; Nishi T; Ashihara T; Schneider NS; Amano A; Matsuda T; Kotera H
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2900-3. PubMed ID: 17946149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytic solution of the anisotropic bidomain equations for myocardial tissue: the effect of adjoining conductive regions.
    Clements JC; Horácek BM
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1784-8. PubMed ID: 16235664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modeling of electromechanical propagation in the helical ventricular anatomy of the heart.
    Marcé-Nogué J; Fortuny G; Ballester-Rodés M; Carreras F; Roure F
    Comput Biol Med; 2013 Nov; 43(11):1698-703. PubMed ID: 24209915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Newton-Krylov method with an approximate analytical Jacobian for implicit solution of Navier-Stokes equations on staggered overset-curvilinear grids with immersed boundaries.
    Asgharzadeh H; Borazjani I
    J Comput Phys; 2017 Feb; 331():227-256. PubMed ID: 28042172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A collocation--Galerkin finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    IEEE Trans Biomed Eng; 1994 Aug; 41(8):743-57. PubMed ID: 7927397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive oxygen species and autonomic regulation of cardiac excitability.
    Danson EJ; Paterson DJ
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S104-S112. PubMed ID: 16686664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Computer simulations of electrical activity of the heart].
    Aliev RR
    Usp Fiziol Nauk; 2010; 41(3):44-63. PubMed ID: 20865937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acceleration of cardiac tissue simulation with graphic processing units.
    Sato D; Xie Y; Weiss JN; Qu Z; Garfinkel A; Sanderson AR
    Med Biol Eng Comput; 2009 Sep; 47(9):1011-5. PubMed ID: 19655187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of macroscopic models of excitation and force propagation in the heart.
    Sachse FB; Blümcke LG; Mohr M; Glänzel K; Häfner J; Riedel C; Seemann G; Skipa O; Werner CD; Dössel O
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 1():217-20. PubMed ID: 12451821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.