These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 16154877)

  • 1. A new numerical concept for modeling hydroxyapatite in human cortical bone.
    Crolet JM; Racila M; Mahraoui R; Meunier A
    Comput Methods Biomech Biomed Engin; 2005 Apr; 8(2):139-43. PubMed ID: 16154877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human cortical bone: the SiNuPrOs model.
    Predoi-Racila M; Crolet JM
    Comput Methods Biomech Biomed Engin; 2008 Apr; 11(2):169-87. PubMed ID: 18297496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? Arguments from a multiscale approach.
    Hellmich C; Ulm FJ; Dormieux L
    Biomech Model Mechanobiol; 2004 Jun; 2(4):219-38. PubMed ID: 15054639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human cortical bone: Computer method for physical behavior at nano scale constant pressure assumption.
    Racila M; Crolet JM
    Technol Health Care; 2006; 14(4-5):379-92. PubMed ID: 17065759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compact bone: numerical simulation of mechanical characteristics.
    Crolet JM; Aoubiza B; Meunier A
    J Biomech; 1993 Jun; 26(6):677-87. PubMed ID: 8390470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are mineralized tissues open crystal foams reinforced by crosslinked collagen? Some energy arguments.
    Hellmich Ch; Ulm FJ
    J Biomech; 2002 Sep; 35(9):1199-1212. PubMed ID: 12163310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between bone tissue strain and lattice strain of HAp crystals in bovine cortical bone under tensile loading.
    Fujisaki K; Tadano S
    J Biomech; 2007; 40(8):1832-8. PubMed ID: 17078958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone.
    Vaughan TJ; McCarthy CT; McNamara LM
    J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociation of mineral and collagen orientations may differentially adapt compact bone for regional loading environments: results from acoustic velocity measurements in deer calcanei.
    Skedros JG; Sorenson SM; Takano Y; Turner CH
    Bone; 2006 Jul; 39(1):143-51. PubMed ID: 16459155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization.
    Nikolov S; Raabe D
    Biophys J; 2008 Jun; 94(11):4220-32. PubMed ID: 18310256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 'Universal' microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity.
    Fritsch A; Hellmich C
    J Theor Biol; 2007 Feb; 244(4):597-620. PubMed ID: 17074362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between the stiffness and the mineral content of bone.
    Currey JD
    J Biomech; 1969 Oct; 2(4):477-80. PubMed ID: 16335147
    [No Abstract]   [Full Text] [Related]  

  • 13. Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength.
    Fritsch A; Hellmich C; Dormieux L
    J Theor Biol; 2009 Sep; 260(2):230-52. PubMed ID: 19497330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the mechanical characterization of compact bone structure using the homogenization theory.
    Aoubiza B; Crolet JM; Meunier A
    J Biomech; 1996 Dec; 29(12):1539-47. PubMed ID: 8945652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collagen's role in the cortical bone's behaviour: a numerical approach.
    Predoi-Racila M; Crolet JM
    Comput Methods Biomech Biomed Engin; 2011 Jul; 14(7):621-31. PubMed ID: 21390931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human cortical bone: the SINUPROS model.
    Predoi-Racila M; Crolet JM
    Stud Health Technol Inform; 2008; 133():208-15. PubMed ID: 18431849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the relationship between the microstructure of bone and its mechanical stiffness.
    Wagner HD; Weiner S
    J Biomech; 1992 Nov; 25(11):1311-20. PubMed ID: 1400532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic deformation of mineralized collagen fibrils: an equivalent inclusion based composite model.
    Akkus O
    J Biomech Eng; 2005 Jun; 127(3):383-90. PubMed ID: 16060345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental and theoretical approach of elasticity and viscoelasticity of compact and spongy bone with periodic homogenization.
    Cherraf-Schweyer C; Maurice G; Taghite M; Taous K
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):195-207. PubMed ID: 17558648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of partition of stress between mineral and collagen phases in bone using X-ray diffraction techniques.
    Borsato KS; Sasaki N
    J Biomech; 1997 Sep; 30(9):955-7. PubMed ID: 9302619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.