BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 16154924)

  • 1. Imaging of spiking and subthreshold activity of mitral cells with voltage-sensitive dyes.
    Djurisić M; Zecević D
    Ann N Y Acad Sci; 2005 Jun; 1048():92-102. PubMed ID: 16154924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple modes of action potential initiation and propagation in mitral cell primary dendrite.
    Chen WR; Shen GY; Shepherd GM; Hines ML; Midtgaard J
    J Neurophysiol; 2002 Nov; 88(5):2755-64. PubMed ID: 12424310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones.
    Djurisic M; Antic S; Chen WR; Zecevic D
    J Neurosci; 2004 Jul; 24(30):6703-14. PubMed ID: 15282273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dendritic excitability and calcium signalling in the mitral cell distal glomerular tuft.
    Zhou Z; Xiong W; Zeng S; Xia A; Shepherd GM; Greer CA; Chen WR
    Eur J Neurosci; 2006 Sep; 24(6):1623-32. PubMed ID: 17004926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Olfactory nerve stimulation-induced calcium signaling in the mitral cell distal dendritic tuft.
    Yuan Q; Knöpfel T
    J Neurophysiol; 2006 Apr; 95(4):2417-26. PubMed ID: 16319202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic activation of T-type Ca2+ channels via mGluR activation in the primary dendrite of mitral cells.
    Johnston J; Delaney KR
    J Neurophysiol; 2010 May; 103(5):2557-69. PubMed ID: 20071628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opposing inward and outward conductances regulate rebound discharges in olfactory mitral cells.
    Balu R; Strowbridge BW
    J Neurophysiol; 2007 Mar; 97(3):1959-68. PubMed ID: 17151219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional structure of the mitral cell dendritic tuft in the rat olfactory bulb.
    Djurisic M; Popovic M; Carnevale N; Zecevic D
    J Neurosci; 2008 Apr; 28(15):4057-68. PubMed ID: 18400905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phasic stimuli evoke precisely timed spikes in intermittently discharging mitral cells.
    Balu R; Larimer P; Strowbridge BW
    J Neurophysiol; 2004 Aug; 92(2):743-53. PubMed ID: 15277594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AMPA autoreceptors drive correlated spiking in olfactory bulb glomeruli.
    Schoppa NE; Westbrook GL
    Nat Neurosci; 2002 Nov; 5(11):1194-202. PubMed ID: 12379859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel role for MNTB neuron dendrites in regulating action potential amplitude and cell excitability during repetitive firing.
    Leão RN; Leão RM; da Costa LF; Rock Levinson S; Walmsley B
    Eur J Neurosci; 2008 Jun; 27(12):3095-108. PubMed ID: 18598256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple spike-initiation zones in single neurons revealed by voltage-sensitive dyes.
    Zecević D
    Nature; 1996 May; 381(6580):322-5. PubMed ID: 8692270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of backpropagating action potentials in mitral cell secondary dendrites.
    Lowe G
    J Neurophysiol; 2002 Jul; 88(1):64-85. PubMed ID: 12091533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuft calcium spikes in accessory olfactory bulb mitral cells.
    Urban NN; Castro JB
    J Neurosci; 2005 May; 25(20):5024-8. PubMed ID: 15901783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells.
    Chen WR; Midtgaard J; Shepherd GM
    Science; 1997 Oct; 278(5337):463-7. PubMed ID: 9334305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dendritic initiation and propagation of spikes and spike bursts in a multimodal sensory interneuron: the crustacean parasol cell.
    Mellon D
    J Neurophysiol; 2003 Oct; 90(4):2465-77. PubMed ID: 12789014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dendrite-to-soma input/output function of continuous time-varying signals in hippocampal CA1 pyramidal neurons.
    Cook EP; Guest JA; Liang Y; Masse NY; Colbert CM
    J Neurophysiol; 2007 Nov; 98(5):2943-55. PubMed ID: 17881486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determinants of low EPSP attenuation in primary dendrites of mitral cells: modeling study.
    Popović M; Djurisić M; Zecević D
    Ann N Y Acad Sci; 2005 Jun; 1048():344-8. PubMed ID: 16154948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational analysis of action potential initiation in mitral cell soma and dendrites based on dual patch recordings.
    Shen GY; Chen WR; Midtgaard J; Shepherd GM; Hines ML
    J Neurophysiol; 1999 Dec; 82(6):3006-20. PubMed ID: 10601436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphology of physiologically identified mitral cells in the carp olfactory bulb: a light microscopic study after intracellular staining with horseradish peroxidase.
    Fujita I; Satou M; Ueda K
    J Comp Neurol; 1988 Jan; 267(2):253-68. PubMed ID: 3343400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.