These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 16154953)

  • 1. Mitochondrial superoxide production and MnSOD activity after exposure to agonist and antagonists of ionotropic glutamate receptors in hippocampus.
    Radenović L; Selaković V; Kartelija G
    Ann N Y Acad Sci; 2005 Jun; 1048():363-5. PubMed ID: 16154953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of NMDA and AMPA/kainate receptor antagonists on superoxide production and MnSOD activity in rat brain following intrahippocampal injection.
    Radenovic L; Selakovic V; Kartelija G; Todorovic N; Nedeljkovic M
    Brain Res Bull; 2004 Jul; 64(1):85-93. PubMed ID: 15275961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of NMDA and AMPA/kainate receptor antagonists on nitric oxide production in rat brain following intrahippocampal injection.
    Radenovic L; Selakovic V
    Brain Res Bull; 2005 Sep; 67(1-2):133-41. PubMed ID: 16140172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca(2+) influx.
    Urushitani M; Nakamizo T; Inoue R; Sawada H; Kihara T; Honda K; Akaike A; Shimohama S
    J Neurosci Res; 2001 Mar; 63(5):377-87. PubMed ID: 11223912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of ionotropic glutamate receptor-mediated nitric oxide production in vivo in rats.
    Bhardwaj A; Northington FJ; Ichord RN; Hanley DF; Traystman RJ; Koehler RC
    Stroke; 1997 Apr; 28(4):850-6; discussion 856-7. PubMed ID: 9099207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of AMPA and kainate glutamate receptors impairs the viability of oligodendrocytes in vitro.
    Sanchez-Gomez MV; Matute C
    Int J Dev Biol; 1996; Suppl 1():187S-188S. PubMed ID: 9087754
    [No Abstract]   [Full Text] [Related]  

  • 7. Depressor responses to L-proline microinjected into the rat ventrolateral medulla are mediated by ionotropic excitatory amino acid receptors.
    Takemoto Y
    Auton Neurosci; 2005 Jun; 120(1-2):108-12. PubMed ID: 15964784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulatory effects of centrally injected kainate and N-methyl-D-aspartate on gastric acid secretion in anesthetized rats.
    Tsuchiya S; Horie S; Yano S; Watanabe K
    Brain Res; 2001 Sep; 914(1-2):115-22. PubMed ID: 11578604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of substantia nigra pars reticulata neuronal activity by excitatory amino acids.
    Schmitt P; Souliere F; Dugast C; Chouvet G
    Naunyn Schmiedebergs Arch Pharmacol; 1999 Oct; 360(4):402-12. PubMed ID: 10551277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Septal and hippocampal glutamate receptors modulate the output of acetylcholine in hippocampus: a microdialysis study.
    Moor E; Auth F; DeBoer P; Westerink BH
    J Neurochem; 1996 Jul; 67(1):310-6. PubMed ID: 8667007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kainate receptor agonists and antagonists mediate tolerance to kainic acid and reduce high-affinity GTPase activity in young, but not aged, rat hippocampus.
    Hesp BR; Wrightson T; Mullaney I; Kerr DS
    J Neurochem; 2004 Jul; 90(1):70-9. PubMed ID: 15198668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction and blockade of epileptic foci by intracerebral injection of glutamatergic agonists and antagonists in frerly moving cats.
    Motles E; Cartier L; Infante C
    Arch Ital Biol; 2002 Jan; 140(1):41-50. PubMed ID: 11889921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-methyl-D-aspartic acid (NMDA) and non-NMDA receptors regulating hippocampal norepinephrine release. I. Location on axon terminals and pharmacological characterization.
    Pittaluga A; Raiteri M
    J Pharmacol Exp Ther; 1992 Jan; 260(1):232-7. PubMed ID: 1370540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging NMDA- and kainate-induced intrinsic optical signals from the hippocampal slice.
    Andrew RD; Adams JR; Polischuk TM
    J Neurophysiol; 1996 Oct; 76(4):2707-17. PubMed ID: 8899640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca(2+) influx through AMPA or kainate receptors alone is sufficient to initiate excitotoxicity in cultured oligodendrocytes.
    Alberdi E; Sánchez-Gómez MV; Marino A; Matute C
    Neurobiol Dis; 2002 Mar; 9(2):234-43. PubMed ID: 11895374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptors mediate development, but not maintenance, of secondary allodynia evoked by first-degree burn in the rat.
    Jones TL; Sorkin LS
    J Pharmacol Exp Ther; 2004 Jul; 310(1):223-9. PubMed ID: 15007101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of glutamate receptor phosphorylation by endogenous protein kinases on electrical activity of isolated postsynaptic densities of rat cortex and hippocampus.
    Wyneken U; Riquelme G; Villanueva S; Orrego F
    Neurosci Lett; 1997 Mar; 224(2):131-5. PubMed ID: 9086474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial apoptotic cell death and moderate superoxide generation upon selective activation of non-desensitizing AMPA receptors in hippocampal cultures.
    Rego AC; Monteiro NM; Silva AP; Gil J; Malva JO; Oliveira CR
    J Neurochem; 2003 Aug; 86(4):792-804. PubMed ID: 12887678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of p44/p42 MAP kinase in striatal neurons via kainate receptors and PI3 kinase.
    Fuller G; Veitch K; Ho LK; Cruise L; Morris BJ
    Brain Res Mol Brain Res; 2001 Apr; 89(1-2):126-32. PubMed ID: 11311983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of lateral hypothalamic AMPA receptors may induce feeding in rats.
    Hettes SR; Gonzaga WJ; Heyming TW; Nguyen JK; Perez S; Stanley BG
    Brain Res; 2010 Jul; 1346():112-20. PubMed ID: 20580634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.