These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 16155564)

  • 21. Mechanical energy and effective foot mass during impact loading of walking and running.
    Chi KJ; Schmitt D
    J Biomech; 2005 Jul; 38(7):1387-95. PubMed ID: 15922749
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The relationship between gait transition speed and the aerobic thresholds for walking and running.
    Sentija D; Markovic G
    Int J Sports Med; 2009 Nov; 30(11):795-801. PubMed ID: 19838979
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differences in muscle function during walking and running at the same speed.
    Sasaki K; Neptune RR
    J Biomech; 2006; 39(11):2005-13. PubMed ID: 16129444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reappraisal of the comparative cost of human locomotion using gait-specific allometric analyses.
    Rubenson J; Heliams DB; Maloney SK; Withers PC; Lloyd DG; Fournier PA
    J Exp Biol; 2007 Oct; 210(Pt 20):3513-24. PubMed ID: 17921153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison between preferred and energetically optimal transition speeds in adolescents.
    Tseh W; Bennett J; Caputo JL; Morgan DW
    Eur J Appl Physiol; 2002 Nov; 88(1-2):117-21. PubMed ID: 12436278
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamics of the body centre of mass during actual acceleration across transition speed.
    Segers V; Aerts P; Lenoir M; De Clercq D
    J Exp Biol; 2007 Feb; 210(Pt 4):578-85. PubMed ID: 17267643
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A quantitative gait assessment method based on energy exchange analysis during walking: a normal gait study.
    Gider F; Matjacić Z; Bajd T
    J Med Eng Technol; 2005; 29(2):90-4. PubMed ID: 15804858
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effective leg stiffness in running.
    Blum Y; Lipfert SW; Seyfarth A
    J Biomech; 2009 Oct; 42(14):2400-5. PubMed ID: 19647825
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Walking and running in the red-legged running frog, Kassina maculata.
    Ahn AN; Furrow E; Biewener AA
    J Exp Biol; 2004 Jan; 207(Pt 3):399-410. PubMed ID: 14691087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective.
    Kuo AD
    Hum Mov Sci; 2007 Aug; 26(4):617-56. PubMed ID: 17617481
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition.
    Ruina A; Bertram JE; Srinivasan M
    J Theor Biol; 2005 Nov; 237(2):170-92. PubMed ID: 15961114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Posture, gait and the ecological relevance of locomotor costs and energy-saving mechanisms in tetrapods.
    Reilly SM; McElroy EJ; Biknevicius AR
    Zoology (Jena); 2007; 110(4):271-89. PubMed ID: 17482802
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Constrained optimization in human walking: cost minimization and gait plasticity.
    Bertram JE
    J Exp Biol; 2005 Mar; 208(Pt 6):979-91. PubMed ID: 15767300
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gait-specific metabolic costs and preferred speeds in ring-tailed lemurs (Lemur catta), with implications for the scaling of locomotor costs.
    O'Neill MC
    Am J Phys Anthropol; 2012 Nov; 149(3):356-64. PubMed ID: 22976581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. What are the relations between mechanics, gait parameters, and energetics in terrestrial locomotion?
    Hoyt DF; Wickler SJ; Dutto DJ; Catterfeld GE; Johnsen D
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):912-22. PubMed ID: 17029281
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting the energy cost of terrestrial locomotion: a test of the LiMb model in humans and quadrupeds.
    Pontzer H
    J Exp Biol; 2007 Feb; 210(Pt 3):484-94. PubMed ID: 17234618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinematics and center of mass mechanics during terrestrial locomotion in northern lapwings (Vanellus vanellus, Charadriiformes).
    Nyakatura JA; Andrada E; Grimm N; Weise H; Fischer MS
    J Exp Zool A Ecol Genet Physiol; 2012 Nov; 317(9):580-94. PubMed ID: 22927254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanics of quadrupedal walking: how do four-legged animals achieve inverted pendulum-like movements?
    Griffin TM; Main RP; Farley CT
    J Exp Biol; 2004 Sep; 207(Pt 20):3545-58. PubMed ID: 15339951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulation of aperiodic bipedal sprinting.
    Celik H; Piazza SJ
    J Biomech Eng; 2013 Aug; 135(8):81008. PubMed ID: 23722442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.