BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 16155583)

  • 21. A molecular dynamics simulation study of amino acid selectivity of LeuRS editing domain from Thermus thermophilus.
    Rayevsky A; Sharifi M; Tukalo M
    J Mol Graph Model; 2018 Sep; 84():74-81. PubMed ID: 29935476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Editing mechanism of aminoacyl-tRNA synthetases operates by a hybrid ribozyme/protein catalyst.
    Hagiwara Y; Field MJ; Nureki O; Tateno M
    J Am Chem Soc; 2010 Mar; 132(8):2751-8. PubMed ID: 20136139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structures of the human and fungal cytosolic Leucyl-tRNA synthetase editing domains: A structural basis for the rational design of antifungal benzoxaboroles.
    Seiradake E; Mao W; Hernandez V; Baker SJ; Plattner JJ; Alley MR; Cusack S
    J Mol Biol; 2009 Jul; 390(2):196-207. PubMed ID: 19426743
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crucial role of the C-terminal domain of Mycobacterium tuberculosis leucyl-tRNA synthetase in aminoacylation and editing.
    Hu QH; Huang Q; Wang ED
    Nucleic Acids Res; 2013 Feb; 41(3):1859-72. PubMed ID: 23268443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structures of the CP1 domain from Thermus thermophilus isoleucyl-tRNA synthetase and its complex with L-valine.
    Fukunaga R; Fukai S; Ishitani R; Nureki O; Yokoyama S
    J Biol Chem; 2004 Feb; 279(9):8396-402. PubMed ID: 14672940
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structures of the editing domain of Escherichia coli leucyl-tRNA synthetase and its complexes with Met and Ile reveal a lock-and-key mechanism for amino acid discrimination.
    Liu Y; Liao J; Zhu B; Wang ED; Ding J
    Biochem J; 2006 Mar; 394(Pt 2):399-407. PubMed ID: 16277600
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A unique insert of leucyl-tRNA synthetase is required for aminoacylation and not amino acid editing.
    Vu MT; Martinis SA
    Biochemistry; 2007 May; 46(17):5170-6. PubMed ID: 17407263
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recognition of human mitochondrial tRNALeu(UUR) by its cognate leucyl-tRNA synthetase.
    Sohm B; Sissler M; Park H; King MP; Florentz C
    J Mol Biol; 2004 May; 339(1):17-29. PubMed ID: 15123417
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation.
    Fukunaga R; Yokoyama S
    J Mol Biol; 2005 Feb; 346(1):57-71. PubMed ID: 15663927
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structure of glutamyl-queuosine tRNAAsp synthetase complexed with L-glutamate: structural elements mediating tRNA-independent activation of glutamate and glutamylation of tRNAAsp anticodon.
    Blaise M; Olieric V; Sauter C; Lorber B; Roy B; Karmakar S; Banerjee R; Becker HD; Kern D
    J Mol Biol; 2008 Sep; 381(5):1224-37. PubMed ID: 18602926
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glycyl-tRNA synthetase uses a negatively charged pit for specific recognition and activation of glycine.
    Arnez JG; Dock-Bregeon AC; Moras D
    J Mol Biol; 1999 Mar; 286(5):1449-59. PubMed ID: 10064708
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transiently misacylated tRNA is a primer for editing of misactivated adenylates by class I aminoacyl-tRNA synthetases.
    Nordin BE; Schimmel P
    Biochemistry; 2003 Nov; 42(44):12989-97. PubMed ID: 14596614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic Origin of Substrate Specificity in Post-Transfer Editing by Leucyl-tRNA Synthetase.
    Dulic M; Cvetesic N; Zivkovic I; Palencia A; Cusack S; Bertosa B; Gruic-Sovulj I
    J Mol Biol; 2018 Jan; 430(1):1-16. PubMed ID: 29111343
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An intermediate step in the recognition of tRNA(Asp) by aspartyl-tRNA synthetase.
    Briand C; Poterszman A; Eiler S; Webster G; Thierry J; Moras D
    J Mol Biol; 2000 Jun; 299(4):1051-60. PubMed ID: 10843857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of alanine-293 replacement on the activity, ATP binding, and editing of Escherichia coli leucyl-tRNA synthetase.
    Chen JF; Li T; Wang ED; Wang YL
    Biochemistry; 2001 Feb; 40(5):1144-9. PubMed ID: 11170439
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A paradigm shift for the amino acid editing mechanism of human cytoplasmic leucyl-tRNA synthetase.
    Pang YL; Martinis SA
    Biochemistry; 2009 Sep; 48(38):8958-64. PubMed ID: 19702327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The 2 A crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue.
    Cusack S; Yaremchuk A; Tukalo M
    EMBO J; 2000 May; 19(10):2351-61. PubMed ID: 10811626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insights into editing from an ile-tRNA synthetase structure with tRNAile and mupirocin.
    Silvian LF; Wang J; Steitz TA
    Science; 1999 Aug; 285(5430):1074-7. PubMed ID: 10446055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two complementary enzymes for threonylation of tRNA in crenarchaeota: crystal structure of Aeropyrum pernix threonyl-tRNA synthetase lacking a cis-editing domain.
    Shimizu S; Juan EC; Sato Y; Miyashita Y; Hoque MM; Suzuki K; Sagara T; Tsunoda M; Sekiguchi T; Dock-Bregeon AC; Moras D; Takénaka A
    J Mol Biol; 2009 Nov; 394(2):286-96. PubMed ID: 19761773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Comparative study of the reactability of phosphoric acid residues in tRNA(Ser) and tRNA(Leu) from Thermus thermophilus].
    Kovalenko OP; Petrushenko ZM; Kriklivyĭ IA; Iaremchuk AD; Tukalo MA
    Bioorg Khim; 1999 Oct; 25(10):768-73. PubMed ID: 10645480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.