These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 16155591)
1. Genetic isolation of transport signals directing cell surface expression. Shikano S; Coblitz B; Sun H; Li M Nat Cell Biol; 2005 Oct; 7(10):985-92. PubMed ID: 16155591 [TBL] [Abstract][Full Text] [Related]
2. Scavenging of 14-3-3 proteins reveals their involvement in the cell-surface transport of ATP-sensitive K+ channels. Heusser K; Yuan H; Neagoe I; Tarasov AI; Ashcroft FM; Schwappach B J Cell Sci; 2006 Oct; 119(Pt 20):4353-63. PubMed ID: 17038548 [TBL] [Abstract][Full Text] [Related]
3. A multimeric membrane protein reveals 14-3-3 isoform specificity in forward transport in yeast. Michelsen K; Mrowiec T; Duderstadt KE; Frey S; Minor DL; Mayer MP; Schwappach B Traffic; 2006 Jul; 7(7):903-16. PubMed ID: 16734667 [TBL] [Abstract][Full Text] [Related]
4. Membrane receptor trafficking: evidence of proximal and distal zones conferred by two independent endoplasmic reticulum localization signals. Shikano S; Li M Proc Natl Acad Sci U S A; 2003 May; 100(10):5783-8. PubMed ID: 12724521 [TBL] [Abstract][Full Text] [Related]
5. Role of ER export signals in controlling surface potassium channel numbers. Ma D; Zerangue N; Lin YF; Collins A; Yu M; Jan YN; Jan LY Science; 2001 Jan; 291(5502):316-9. PubMed ID: 11209084 [TBL] [Abstract][Full Text] [Related]
6. A transmembrane motif governs the surface trafficking of nicotinic acetylcholine receptors. Wang JM; Zhang L; Yao Y; Viroonchatapan N; Rothe E; Wang ZZ Nat Neurosci; 2002 Oct; 5(10):963-70. PubMed ID: 12219096 [TBL] [Abstract][Full Text] [Related]
7. PDZ-binding and di-hydrophobic motifs regulate distribution of Kir4.1 channels in renal cells. Tanemoto M; Abe T; Ito S J Am Soc Nephrol; 2005 Sep; 16(9):2608-14. PubMed ID: 16033858 [TBL] [Abstract][Full Text] [Related]
8. Interaction of the K(+)-channel KAT1 with the coat protein complex II coat component Sec24 depends on a di-acidic endoplasmic reticulum export motif. Sieben C; Mikosch M; Brandizzi F; Homann U Plant J; 2008 Dec; 56(6):997-1006. PubMed ID: 18702673 [TBL] [Abstract][Full Text] [Related]
9. 14-3-3 proteins in membrane protein transport. Mrowiec T; Schwappach B Biol Chem; 2006 Sep; 387(9):1227-36. PubMed ID: 16972791 [TBL] [Abstract][Full Text] [Related]
10. 14-3-3 proteins: regulation of endoplasmic reticulum localization and surface expression of membrane proteins. Shikano S; Coblitz B; Wu M; Li M Trends Cell Biol; 2006 Jul; 16(7):370-5. PubMed ID: 16769213 [TBL] [Abstract][Full Text] [Related]
11. C-terminal recognition by 14-3-3 proteins for surface expression of membrane receptors. Coblitz B; Shikano S; Wu M; Gabelli SB; Cockrell LM; Spieker M; Hanyu Y; Fu H; Amzel LM; Li M J Biol Chem; 2005 Oct; 280(43):36263-72. PubMed ID: 16123035 [TBL] [Abstract][Full Text] [Related]
12. A hydrophobicity-dependent motif responsible for surface expression of cardiac potassium channel. Pan N; Sun J; Lv C; Li H; Ding J Cell Signal; 2009 Feb; 21(2):349-55. PubMed ID: 19041715 [TBL] [Abstract][Full Text] [Related]
13. PI3K/Akt signalling-mediated protein surface expression sensed by 14-3-3 interacting motif. Chung JJ; Okamoto Y; Coblitz B; Li M; Qiu Y; Shikano S FEBS J; 2009 Oct; 276(19):5547-58. PubMed ID: 19691494 [TBL] [Abstract][Full Text] [Related]
14. Distinct motifs in the chemokine receptor CCR7 regulate signal transduction, receptor trafficking and chemotaxis. Otero C; Eisele PS; Schaeuble K; Groettrup M; Legler DF J Cell Sci; 2008 Aug; 121(Pt 16):2759-67. PubMed ID: 18664492 [TBL] [Abstract][Full Text] [Related]
15. Topology and endoplasmic reticulum retention signals of the lysosomal storage disease-related membrane protein CLN6. Heine C; Quitsch A; Storch S; Martin Y; Lonka L; Lehesjoki AE; Mole SE; Braulke T Mol Membr Biol; 2007; 24(1):74-87. PubMed ID: 17453415 [TBL] [Abstract][Full Text] [Related]
16. Diacidic motif is required for efficient transport of the K+ channel KAT1 to the plasma membrane. Mikosch M; Hurst AC; Hertel B; Homann U Plant Physiol; 2006 Nov; 142(3):923-30. PubMed ID: 16950859 [TBL] [Abstract][Full Text] [Related]
17. The acidic motif of WNK4 is crucial for its interaction with the K channel ROMK. Murthy M; Cope G; O'Shaughnessy KM Biochem Biophys Res Commun; 2008 Oct; 375(4):651-4. PubMed ID: 18755144 [TBL] [Abstract][Full Text] [Related]
18. A di-acidic sequence motif enhances the surface expression of the potassium channel TASK-3. Zuzarte M; Rinné S; Schlichthörl G; Schubert A; Daut J; Preisig-Müller R Traffic; 2007 Aug; 8(8):1093-100. PubMed ID: 17547699 [TBL] [Abstract][Full Text] [Related]
19. Function recovery after chemobleaching (FRAC): evidence for activity silent membrane receptors on cell surface. Sun H; Shikano S; Xiong Q; Li M Proc Natl Acad Sci U S A; 2004 Nov; 101(48):16964-9. PubMed ID: 15548608 [TBL] [Abstract][Full Text] [Related]
20. The BASH/BLNK/SLP-65-associated protein BNAS1 regulates antigen-receptor signal transmission in B cells. Katahira T; Imamura Y; Kitamura D Int Immunol; 2006 Apr; 18(4):545-53. PubMed ID: 16481341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]