These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 16155883)
1. Effect of the axial cysteine ligand on the electronic structure and reactivity of high-valent iron(IV) oxo-porphyrins (Compound I): a theoretical study. Choe YK; Nagase S J Comput Chem; 2005 Nov; 26(15):1600-11. PubMed ID: 16155883 [TBL] [Abstract][Full Text] [Related]
2. How axial ligands control the reactivity of high-valent iron(IV)-oxo porphyrin pi-cation radicals in alkane hydroxylation: a computational study. Kamachi T; Kouno T; Nam W; Yoshizawa K J Inorg Biochem; 2006 Apr; 100(4):751-4. PubMed ID: 16516298 [TBL] [Abstract][Full Text] [Related]
3. Enhanced reactivities of iron(IV)-oxo porphyrin pi-cation radicals in oxygenation reactions by electron-donating axial ligands. Kang Y; Chen H; Jeong YJ; Lai W; Bae EH; Shaik S; Nam W Chemistry; 2009 Oct; 15(39):10039-46. PubMed ID: 19697378 [TBL] [Abstract][Full Text] [Related]
4. Electronic structure of six-coordinate iron(III)-porphyrin NO adducts: the elusive iron(III)-NO(radical) state and its influence on the properties of these complexes. Praneeth VK; Paulat F; Berto TC; George SD; Näther C; Sulok CD; Lehnert N J Am Chem Soc; 2008 Nov; 130(46):15288-303. PubMed ID: 18942830 [TBL] [Abstract][Full Text] [Related]
5. How does the axial ligand of cytochrome P450 biomimetics influence the regioselectivity of aliphatic versus aromatic hydroxylation? de Visser SP; Tahsini L; Nam W Chemistry; 2009; 15(22):5577-87. PubMed ID: 19347895 [TBL] [Abstract][Full Text] [Related]
6. Iron porphyrin dications with neutral axial ligands: DFT calculations delineate similarities with heme protein compound II intermediates. Chamberlin AC; Ikezaki A; Nakamura M; Ghosh A J Phys Chem B; 2011 Apr; 115(13):3642-7. PubMed ID: 21410175 [TBL] [Abstract][Full Text] [Related]
7. Trends in substrate hydroxylation reactions by heme and nonheme iron(IV)-oxo oxidants give correlations between intrinsic properties of the oxidant with barrier height. de Visser SP J Am Chem Soc; 2010 Jan; 132(3):1087-97. PubMed ID: 20041691 [TBL] [Abstract][Full Text] [Related]
8. Electronic ground states of iron porphyrin and of the first species in the catalytic reaction cycle of cytochrome P450s. Groenhof AR; Swart M; Ehlers AW; Lammertsma K J Phys Chem A; 2005 Apr; 109(15):3411-7. PubMed ID: 16833677 [TBL] [Abstract][Full Text] [Related]
9. Why do cysteine dioxygenase enzymes contain a 3-His ligand motif rather than a 2His/1Asp motif like most nonheme dioxygenases? de Visser SP; Straganz GD J Phys Chem A; 2009 Mar; 113(9):1835-46. PubMed ID: 19199799 [TBL] [Abstract][Full Text] [Related]
10. Effect of the axial ligand on substrate sulfoxidation mediated by iron(IV)-oxo porphyrin cation radical oxidants. Kumar D; Sastry GN; de Visser SP Chemistry; 2011 May; 17(22):6196-205. PubMed ID: 21469227 [TBL] [Abstract][Full Text] [Related]
11. Density functional theory calculations on ruthenium(IV) bis(amido) porphyrins: search for a broader perspective of heme protein compound II intermediates. Gonzalez E; Brothers PJ; Ghosh A J Phys Chem B; 2010 Nov; 114(46):15380-8. PubMed ID: 20979402 [TBL] [Abstract][Full Text] [Related]
12. Bis(alpha-diimine)iron complexes: electronic structure determination by spectroscopy and broken symmetry density functional theoretical calculations. Muresan N; Lu CC; Ghosh M; Peters JC; Abe M; Henling LM; Weyhermöller T; Bill E; Wieghardt K Inorg Chem; 2008 Jun; 47(11):4579-90. PubMed ID: 18442239 [TBL] [Abstract][Full Text] [Related]
13. Electronic structure and reactivity of isomeric oxo-Mn(V) porphyrins: effects of spin-state crossing and pKa modulation. De Angelis F; Jin N; Car R; Groves JT Inorg Chem; 2006 May; 45(10):4268-76. PubMed ID: 16676990 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic insight into formation of oxo-iron(IV) porphyrin pi-cation radicals from enzyme mimics of cytochrome P450 in organic solvents. Hessenauer-Ilicheva N; Franke A; Meyer D; Woggon WD; van Eldik R Chemistry; 2009; 15(12):2941-59. PubMed ID: 19185039 [TBL] [Abstract][Full Text] [Related]
15. The axial ligand effect on aliphatic and aromatic hydroxylation by non-heme iron(IV)-oxo biomimetic complexes. de Visser SP; Latifi R; Tahsini L; Nam W Chem Asian J; 2011 Feb; 6(2):493-504. PubMed ID: 21254427 [TBL] [Abstract][Full Text] [Related]
16. Effect of porphyrin ligands on the regioselective dehydrogenation versus epoxidation of olefins by oxoiron(IV) mimics of cytochrome P450. Kumar D; Tahsini L; de Visser SP; Kang HY; Kim SJ; Nam W J Phys Chem A; 2009 Oct; 113(43):11713-22. PubMed ID: 19658379 [TBL] [Abstract][Full Text] [Related]
17. The effect of the axial ligand on distinct reaction tunneling for methane hydroxylation by nonheme iron(IV)-oxo complexes. Tang H; Guan J; Zhang L; Liu H; Huang X Phys Chem Chem Phys; 2012 Oct; 14(37):12863-74. PubMed ID: 22890313 [TBL] [Abstract][Full Text] [Related]
18. High-valent iron(IV)-oxo complexes of heme and non-heme ligands in oxygenation reactions. Nam W Acc Chem Res; 2007 Jul; 40(7):522-31. PubMed ID: 17469792 [TBL] [Abstract][Full Text] [Related]
19. Spectroscopic properties and electronic structure of five- and six-coordinate iron(II) porphyrin NO complexes: Effect of the axial N-donor ligand. Praneeth VK; Näther C; Peters G; Lehnert N Inorg Chem; 2006 Apr; 45(7):2795-811. PubMed ID: 16562937 [TBL] [Abstract][Full Text] [Related]
20. Rationalization of the barrier height for p-Z-styrene epoxidation by iron(IV)-oxo porphyrin cation radicals with variable axial ligands. Kumar D; Latifi R; Kumar S; Rybak-Akimova EV; Sainna MA; de Visser SP Inorg Chem; 2013 Jul; 52(14):7968-79. PubMed ID: 23822112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]