These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
446 related articles for article (PubMed ID: 16156288)
1. [Advance in research of osteoblast adhesion to bioactive materials]. Niu X; Luo Y; Pan J; Wang Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):848-52. PubMed ID: 16156288 [TBL] [Abstract][Full Text] [Related]
2. Different substitute biomaterials as potential scaffolds in tissue engineering. Petrovic L; Schlegel AK; Schultze-Mosgau S; Wiltfang J Int J Oral Maxillofac Implants; 2006; 21(2):225-31. PubMed ID: 16634492 [TBL] [Abstract][Full Text] [Related]
3. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Murphy CM; Haugh MG; O'Brien FJ Biomaterials; 2010 Jan; 31(3):461-6. PubMed ID: 19819008 [TBL] [Abstract][Full Text] [Related]
4. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
5. Development of glass-ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation. Vitale-Brovarone C; Verné E; Robiglio L; Appendino P; Bassi F; Martinasso G; Muzio G; Canuto R Acta Biomater; 2007 Mar; 3(2):199-208. PubMed ID: 17085090 [TBL] [Abstract][Full Text] [Related]
6. [Recent progress on silk fibroin as tissue engineering biomaterials]. Wang H; Li M Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Feb; 22(2):192-5. PubMed ID: 18365617 [TBL] [Abstract][Full Text] [Related]
7. Potential use of craniosynostotic osteoprogenitors and bioactive scaffolds for bone engineering. Santos-Ruiz L; Mowatt DJ; Marguerie A; Tukiainen D; Kellomäki M; Törmälä P; Suokas E; Arstila H; Ashammakhi N; Ferretti P J Tissue Eng Regen Med; 2007; 1(3):199-210. PubMed ID: 18038412 [TBL] [Abstract][Full Text] [Related]
8. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering]. Wang X; Liu L; Zhang Q Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456 [TBL] [Abstract][Full Text] [Related]
9. Crosslinked poly(epsilon-caprolactone/D,L-lactide)/bioactive glass composite scaffolds for bone tissue engineering. Meretoja VV; Helminen AO; Korventausta JJ; Haapa-aho V; Seppälä JV; Närhi TO J Biomed Mater Res A; 2006 May; 77(2):261-8. PubMed ID: 16392138 [TBL] [Abstract][Full Text] [Related]
10. Human adipose-derived stem cells (hASCs) proliferate and differentiate in osteoblast-like cells on trabecular titanium scaffolds. Gastaldi G; Asti A; Scaffino MF; Visai L; Saino E; Cometa AM; Benazzo F J Biomed Mater Res A; 2010 Sep; 94(3):790-9. PubMed ID: 20336739 [TBL] [Abstract][Full Text] [Related]
11. Development of 3-D nanofibrous fibroin scaffold with high porosity by electrospinning: implications for bone regeneration. Ki CS; Park SY; Kim HJ; Jung HM; Woo KM; Lee JW; Park YH Biotechnol Lett; 2008 Mar; 30(3):405-10. PubMed ID: 17973083 [TBL] [Abstract][Full Text] [Related]
12. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168 [TBL] [Abstract][Full Text] [Related]
13. Development of hybrid materials based on hydroxyethylmethacrylate as supports for improving cell adhesion and proliferation. Schiraldi C; D'Agostino A; Oliva A; Flamma F; De Rosa A; Apicella A; Aversa R; De Rosa M Biomaterials; 2004 Aug; 25(17):3645-53. PubMed ID: 15020139 [TBL] [Abstract][Full Text] [Related]
14. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering. Li Y; Xiong J; Wong CS; Hodgson PD; Wen C Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266 [TBL] [Abstract][Full Text] [Related]
15. A novel approach to control growth, orientation, and shape of human osteoblasts. Czarnecki JS; Lafdi K; Tsonis PA Tissue Eng Part A; 2008 Feb; 14(2):255-65. PubMed ID: 18333778 [TBL] [Abstract][Full Text] [Related]
16. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering. Ni S; Chang J; Chou L J Biomed Mater Res A; 2006 Jan; 76(1):196-205. PubMed ID: 16265636 [TBL] [Abstract][Full Text] [Related]
17. The effect of starch and starch-bioactive glass composite microparticles on the adhesion and expression of the osteoblastic phenotype of a bone cell line. Silva GA; Coutinho OP; Ducheyne P; Shapiro IM; Reis RL Biomaterials; 2007 Jan; 28(2):326-34. PubMed ID: 16876242 [TBL] [Abstract][Full Text] [Related]
18. Novel apatite fiber scaffolds can promote three-dimensional proliferation of osteoblasts in rodent bone regeneration models. Morisue H; Matsumoto M; Chiba K; Matsumoto H; Toyama Y; Aizawa M; Kanzawa N; Fujimi TJ; Uchida H; Okada I J Biomed Mater Res A; 2009 Sep; 90(3):811-8. PubMed ID: 18615469 [TBL] [Abstract][Full Text] [Related]
19. Bacterial and Candida albicans adhesion on rapid prototyping-produced 3D-scaffolds manufactured as bone replacement materials. Al-Ahmad A; Wiedmann-Al-Ahmad M; Carvalho C; Lang M; Follo M; Braun G; Wittmer A; Mülhaupt R; Hellwig E J Biomed Mater Res A; 2008 Dec; 87(4):933-43. PubMed ID: 18228269 [TBL] [Abstract][Full Text] [Related]