These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 16156292)
41. Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients. Wells DR; Archie JP; Kleinstreuer C J Vasc Surg; 1996 Apr; 23(4):667-78. PubMed ID: 8627904 [TBL] [Abstract][Full Text] [Related]
42. Computational Fluid Dynamics Simulation of Hemodynamic Alterations in Sigmoid Sinus Diverticulum and Ipsilateral Upstream Sinus Stenosis After Stent Implantation in Patients with Pulsatile Tinnitus. Han Y; Yang Q; Yang Z; Xia J; Su T; Yu J; Jin L; Qiao A World Neurosurg; 2017 Oct; 106():308-314. PubMed ID: 28698087 [TBL] [Abstract][Full Text] [Related]
43. Computer modeling for the prediction of thoracic aortic stent graft collapse. Pasta S; Cho JS; Dur O; Pekkan K; Vorp DA J Vasc Surg; 2013 May; 57(5):1353-61. PubMed ID: 23313184 [TBL] [Abstract][Full Text] [Related]
44. Behaviour of two typical stents towards a new stent evolution. Simão M; Ferreira JM; Mora-Rodriguez J; Fragata J; Ramos HM Med Biol Eng Comput; 2017 Jun; 55(6):1019-1037. PubMed ID: 27669700 [TBL] [Abstract][Full Text] [Related]
45. Study of the evolution of the shear stress on the restenosis after coronary angioplasty. García J; Crespo A; Goicolea J; Sanmartín M; García C J Biomech; 2006; 39(5):799-805. PubMed ID: 16488219 [TBL] [Abstract][Full Text] [Related]
46. Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution. Wentzel JJ; Whelan DM; van der Giessen WJ; van Beusekom HM; Andhyiswara I; Serruys PW; Slager CJ; Krams R J Biomech; 2000 Oct; 33(10):1287-95. PubMed ID: 10899339 [TBL] [Abstract][Full Text] [Related]
47. Predicting neointimal hyperplasia in stented arteries using time-dependant computational fluid dynamics: a review. Murphy J; Boyle F Comput Biol Med; 2010 Apr; 40(4):408-18. PubMed ID: 20211464 [TBL] [Abstract][Full Text] [Related]
48. Experimental study of laminar blood flow through an artery treated by a stent implantation: characterisation of intra-stent wall shear stress. Benard N; Coisne D; Donal E; Perrault R J Biomech; 2003 Jul; 36(7):991-8. PubMed ID: 12757808 [TBL] [Abstract][Full Text] [Related]
49. Assessment of the effects of increasing levels of physiological realism in the computational fluid dynamics analyses of implanted coronary stents. Murphy J; Boyle F Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5906-9. PubMed ID: 19164062 [TBL] [Abstract][Full Text] [Related]
51. Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow. Glor FP; Long Q; Hughes AD; Augst AD; Ariff B; Thom SA; Verdonck PR; Xu XY Ann Biomed Eng; 2003 Feb; 31(2):142-51. PubMed ID: 12627821 [TBL] [Abstract][Full Text] [Related]
52. The effect of angle on wall shear stresses in a LIMA to LAD anastomosis: numerical modelling of pulsatile flow. Freshwater IJ; Morsi YS; Lai T Proc Inst Mech Eng H; 2006 Oct; 220(7):743-57. PubMed ID: 17117764 [TBL] [Abstract][Full Text] [Related]
54. Segmental vessel wall shear stress and neointimal formation after sirolimus-eluting stent implantation: physiological insights in a porcine coronary model. Carter AJ; Wei W; Gibson L; Collingwood R; Tio F; Dooley J; Kopia GA Cardiovasc Revasc Med; 2005; 6(2):58-64. PubMed ID: 16263360 [TBL] [Abstract][Full Text] [Related]
55. Local hemodynamic changes caused by main branch stent implantation and subsequent virtual side branch balloon angioplasty in a representative coronary bifurcation. Williams AR; Koo BK; Gundert TJ; Fitzgerald PJ; LaDisa JF J Appl Physiol (1985); 2010 Aug; 109(2):532-40. PubMed ID: 20507966 [TBL] [Abstract][Full Text] [Related]
56. Blood flow in stented arteries: a parametric comparison of strut design patterns in three dimensions. He Y; Duraiswamy N; Frank AO; Moore JE J Biomech Eng; 2005 Aug; 127(4):637-47. PubMed ID: 16121534 [TBL] [Abstract][Full Text] [Related]
57. CFD analysis in an anatomically realistic coronary artery model based on non-invasive 3D imaging: comparison of magnetic resonance imaging with computed tomography. Goubergrits L; Kertzscher U; Schöneberg B; Wellnhofer E; Petz C; Hege HC Int J Cardiovasc Imaging; 2008 Apr; 24(4):411-21. PubMed ID: 17955344 [TBL] [Abstract][Full Text] [Related]
58. Computational simulation of intracoronary flow based on real coronary geometry. Boutsianis E; Dave H; Frauenfelder T; Poulikakos D; Wildermuth S; Turina M; Ventikos Y; Zund G Eur J Cardiothorac Surg; 2004 Aug; 26(2):248-56. PubMed ID: 15296879 [TBL] [Abstract][Full Text] [Related]
59. Hemodynamic alternations following stent deployment and post-dilation in a heavily calcified coronary artery: In silico and ex-vivo approaches. Gamage PT; Dong P; Lee J; Gharaibeh Y; Zimin VN; Dallan LAP; Bezerra HG; Wilson DL; Gu L Comput Biol Med; 2021 Dec; 139():104962. PubMed ID: 34715552 [TBL] [Abstract][Full Text] [Related]
60. Computed numerical analysis of the biomechanical effects on coronary atherogenesis using human hemodynamic and dimensional variables. Lee BK; Kwon HM; Kim D; Yoon YW; Seo JK; Kim IJ; Roh HW; Suh SH; Yoo SS; Kim HS Yonsei Med J; 1998 Apr; 39(2):166-74. PubMed ID: 9587258 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]