These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 16156294)

  • 1. In vitro evaluation of multiobjective hemodynamic control of a heart-assist pump.
    Gwak KW; Ricci M; Snyder S; Paden BE; Boston JR; Simaan MA; Antaki JF
    ASAIO J; 2005; 51(4):329-35. PubMed ID: 16156294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of extremum seeking control to turbodynamic blood pumps.
    Gwak KW
    ASAIO J; 2007; 53(4):403-9. PubMed ID: 17667222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controller for an axial-flow blood pump.
    Amin DV; Antaki JF; Litwak P; Thomas D; Wu Z; Yu YC; Choi S; Boston JR; Griffith BP
    Biomed Instrum Technol; 1997; 31(5):483-7. PubMed ID: 9367047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro hemodynamic evaluation of ventricular suction conditions of the EVAHEART ventricular assist pump.
    Ferreira AL; Yu YC; Arnold DK; Vandenberghe S; Grashow J; Kitano T; Borzelleca D; Antaki JF
    Int J Artif Organs; 2012 Apr; 35(4):263-71. PubMed ID: 22505201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices.
    Gregory SD; Stevens MC; Pauls JP; Schummy E; Diab S; Thomson B; Anderson B; Tansley G; Salamonsen R; Fraser JF; Timms D
    Artif Organs; 2016 Sep; 40(9):894-903. PubMed ID: 26748566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vivo Evaluation of Physiologic Control Algorithms for Left Ventricular Assist Devices Based on Left Ventricular Volume or Pressure.
    Ochsner G; Wilhelm MJ; Amacher R; Petrou A; Cesarovic N; Staufert S; Röhrnbauer B; Maisano F; Hierold C; Meboldt M; Schmid Daners M
    ASAIO J; 2017; 63(5):568-577. PubMed ID: 28857904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of a rotary pulsatile cardiac assist pump driven by an electric motor without a pressure sensor to avoid collapse of the pump inlet.
    Trinkl J; Havlik P; Mesana T; Mitsui N; Morita S; Demunck JL; Tourres JL; Monties JR
    ASAIO J; 1993; 39(3):M237-41. PubMed ID: 8268535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pulsatile control algorithm of continuous-flow pump for heart recovery.
    Gao B; Chang Y; Gu K; Zeng Y; Liu Y
    ASAIO J; 2012; 58(4):343-52. PubMed ID: 22576238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully autonomous preload-sensitive control of implantable rotary blood pumps.
    Arndt A; Nüsser P; Lampe B
    Artif Organs; 2010 Sep; 34(9):726-35. PubMed ID: 20883392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implantable physiologic controller for left ventricular assist devices with telemetry capability.
    Asgari SS; Bonde P
    J Thorac Cardiovasc Surg; 2014 Jan; 147(1):192-202. PubMed ID: 24176267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastance-based control of a mock circulatory system.
    Baloa LA; Boston JR; Antaki JF
    Ann Biomed Eng; 2001 Mar; 29(3):244-51. PubMed ID: 11310786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a reliable automatic speed control system for rotary blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    J Heart Lung Transplant; 2005 Nov; 24(11):1878-85. PubMed ID: 16297795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Importance of Venous Return in Starling-Like Control of Rotary Ventricular Assist Devices.
    Stephens AF; Gregory SD; Salamonsen RF
    Artif Organs; 2019 Mar; 43(3):E16-E27. PubMed ID: 30094842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiologic control of rotary blood pumps: an in vitro study.
    Giridharan GA; Pantalos GM; Gillars KJ; Koenig SC; Skliar M
    ASAIO J; 2004; 50(5):403-9. PubMed ID: 15497377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Multi-objective Physiological Control System for Rotary Left Ventricular Assist Devices.
    Petrou A; Monn M; Meboldt M; Schmid Daners M
    Ann Biomed Eng; 2017 Dec; 45(12):2899-2910. PubMed ID: 28900761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro evaluation of multi-objective physiological control of the centrifugal blood pump.
    Leao T; Utiyama B; Fonseca J; Bock E; Andrade A
    Artif Organs; 2020 Aug; 44(8):785-796. PubMed ID: 31944337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vitro Evaluation of an Immediate Response Starling-Like Controller for Dual Rotary Blood Pumps.
    Stephens AF; Stevens MC; Gregory SD; Kleinheyer M; Salamonsen RF
    Artif Organs; 2017 Oct; 41(10):911-922. PubMed ID: 28741664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controller for an axial flow blood pump.
    Konishi H; Antaki JF; Amin DV; Boston JR; Kerrigan JP; Mandarino WA; Litwak P; Yamazaki K; Macha M; Butler KC; Borovetz HS; Kormos RL
    Artif Organs; 1996 Jun; 20(6):618-20. PubMed ID: 8817966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of continuous flow ventricular assist devices in patients with heart failure and a normal ejection fraction: a computer-simulation study.
    Moscato F; Wirrmann C; Granegger M; Eskandary F; Zimpfer D; Schima H
    J Thorac Cardiovasc Surg; 2013 May; 145(5):1352-8. PubMed ID: 22841169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective reduction of afterload in right heart assist therapy: a mock loop study†.
    Hsu PL; Hatam N; Unterkofler J; Goetzenich A; McIntyre M; Wong KC; Egger C; Schmitz-Rode T; Autschbach R; Steinseifer U
    Interact Cardiovasc Thorac Surg; 2014 Jul; 19(1):76-81. PubMed ID: 24670773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.