BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 16156674)

  • 1. An experiment-based algorithm for predicting the partitioning of unfolded peptides into phosphatidylcholine bilayer interfaces.
    Hristova K; White SH
    Biochemistry; 2005 Sep; 44(37):12614-9. PubMed ID: 16156674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulations of pentapeptides at interfaces: salt bridge and cation-pi interactions.
    Aliste MP; MacCallum JL; Tieleman DP
    Biochemistry; 2003 Aug; 42(30):8976-87. PubMed ID: 12885230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvation energies of amino acid side chains and backbone in a family of host-guest pentapeptides.
    Wimley WC; Creamer TP; White SH
    Biochemistry; 1996 Apr; 35(16):5109-24. PubMed ID: 8611495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulation of partitioning of ten pentapeptides Ace-WLXLL at the cyclohexane/water and phospholipid/water interfaces.
    Aliste MP; Tieleman DP
    BMC Biochem; 2005 Dec; 6():30. PubMed ID: 16368010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of structure-lipid bilayer permeability relationships for peptide-like small organic molecules.
    Cao Y; Xiang TX; Anderson BD
    Mol Pharm; 2008; 5(3):371-88. PubMed ID: 18355031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The membrane affinities of the aliphatic amino acid side chains in an alpha-helical context are independent of membrane immersion depth.
    Russell CJ; Thorgeirsson TE; Shin YK
    Biochemistry; 1999 Jan; 38(1):337-46. PubMed ID: 9890915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol. Molecular dynamics simulation studies.
    Róg T; Murzyn K; Karttunen M; Pasenkiewicz-Gierula M
    J Pept Sci; 2008 Apr; 14(4):374-82. PubMed ID: 17985365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hydrophobicity scale for the lipid bilayer barrier domain from peptide permeabilities: nonadditivities in residue contributions.
    Mayer PT; Xiang TX; Niemi R; Anderson BD
    Biochemistry; 2003 Feb; 42(6):1624-36. PubMed ID: 12578376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a soluble transmembrane helix for measurements of water-membrane partitioning.
    Yano Y; Shimai N; Matsuzaki K
    J Phys Chem B; 2010 Feb; 114(5):1925-31. PubMed ID: 20085245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulation of the distribution of hexane in a lipid bilayer: spatially resolved free energy, entropy, and enthalpy profiles.
    MacCallum JL; Tieleman DP
    J Am Chem Soc; 2006 Jan; 128(1):125-30. PubMed ID: 16390139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct determination of the membrane affinities of individual amino acids.
    Thorgeirsson TE; Russell CJ; King DS; Shin YK
    Biochemistry; 1996 Feb; 35(6):1803-9. PubMed ID: 8639661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence analysis and membrane partitioning energies of alpha-helical antimicrobial peptides.
    Han X; Kang W
    Bioinformatics; 2004 Apr; 20(6):970-3. PubMed ID: 14764568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane adsorption, folding, insertion and translocation of synthetic trans-membrane peptides.
    Ulmschneider MB; Ulmschneider JP
    Mol Membr Biol; 2008 Apr; 25(3):245-57. PubMed ID: 18428040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terminal ion pairs stabilize the second beta-hairpin of the B1 domain of protein G.
    Huyghues-Despointes BM; Qu X; Tsai J; Scholtz JM
    Proteins; 2006 Jun; 63(4):1005-17. PubMed ID: 16470585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translocation of amino acyl residues from the membrane interface to the hydrophobic core: thermodynamic model and experimental analysis using ATR-FTIR spectroscopy.
    Aisenbrey C; Goormaghtigh E; Ruysschaert JM; Bechinger B
    Mol Membr Biol; 2006; 23(4):363-74. PubMed ID: 16923729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial tension of phosphatidylcholine-phosphatidylserine system in bilayer lipid membrane.
    Petelska AD; Figaszewski ZA
    Biophys Chem; 2006 Apr; 120(3):199-206. PubMed ID: 16380205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using the Wimley-White Hydrophobicity Scale as a Direct Quantitative Test of Force Fields: The MARTINI Coarse-Grained Model.
    Singh G; Tieleman DP
    J Chem Theory Comput; 2011 Jul; 7(7):2316-24. PubMed ID: 26606499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of permeation through phosphatidylcholine bilayers of N-dipicolinyl-alpha- and -beta-oligopeptides.
    Gardiner J; Thomae AV; Mathad RI; Seebach D; Krämer SD
    Chem Biodivers; 2006 Nov; 3(11):1181-201. PubMed ID: 17193232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of thermodynamic parameters for hydrophobic mismatch 2: intermembrane transfer of a transmembrane helix.
    Yano Y; Ogura M; Matsuzaki K
    Biochemistry; 2006 Mar; 45(10):3379-85. PubMed ID: 16519532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.