These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 16156790)
1. The influence of cold shock proteins on transcription and translation studied in cell-free model systems. Hofweber R; Horn G; Langmann T; Balbach J; Kremer W; Schmitz G; Kalbitzer HR FEBS J; 2005 Sep; 272(18):4691-702. PubMed ID: 16156790 [TBL] [Abstract][Full Text] [Related]
2. Common mode of DNA binding to cold shock domains. Crystal structure of hexathymidine bound to the domain-swapped form of a major cold shock protein from Bacillus caldolyticus. Max KE; Zeeb M; Bienert R; Balbach J; Heinemann U FEBS J; 2007 Mar; 274(5):1265-79. PubMed ID: 17266726 [TBL] [Abstract][Full Text] [Related]
3. Complementation of cold shock proteins by translation initiation factor IF1 in vivo. Weber MH; Beckering CL; Marahiel MA J Bacteriol; 2001 Dec; 183(24):7381-6. PubMed ID: 11717297 [TBL] [Abstract][Full Text] [Related]
4. Localization of cold shock proteins to cytosolic spaces surrounding nucleoids in Bacillus subtilis depends on active transcription. Weber MH; Volkov AV; Fricke I; Marahiel MA; Graumann PL J Bacteriol; 2001 Nov; 183(21):6435-43. PubMed ID: 11591689 [TBL] [Abstract][Full Text] [Related]
5. Cloning, overexpression, purification, and physicochemical characterization of a cold shock protein homolog from the hyperthermophilic bacterium Thermotoga maritima. Welker C; Böhm G; Schurig H; Jaenicke R Protein Sci; 1999 Feb; 8(2):394-403. PubMed ID: 10048332 [TBL] [Abstract][Full Text] [Related]
6. Functional conservation of cold shock domains in bacteria and higher plants. Nakaminami K; Karlson DT; Imai R Proc Natl Acad Sci U S A; 2006 Jun; 103(26):10122-7. PubMed ID: 16788067 [TBL] [Abstract][Full Text] [Related]
7. Control of transcription termination in bacteria by RNA-binding proteins that modulate RNA structures. Stülke J Arch Microbiol; 2002 Jun; 177(6):433-40. PubMed ID: 12029388 [TBL] [Abstract][Full Text] [Related]
8. Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein. Mueller U; Perl D; Schmid FX; Heinemann U J Mol Biol; 2000 Apr; 297(4):975-88. PubMed ID: 10736231 [TBL] [Abstract][Full Text] [Related]
9. Comparative analysis of changes in gene expression due to RNA melting activities of translation initiation factor IF1 and a cold shock protein of the CspA family. Phadtare S; Severinov K Genes Cells; 2009 Nov; 14(11):1227-39. PubMed ID: 19840122 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamic and kinetic determinants of Thermotoga maritima cold shock protein stability: a structural and dynamic analysis. Motono C; Gromiha MM; Kumar S Proteins; 2008 May; 71(2):655-69. PubMed ID: 17975840 [TBL] [Abstract][Full Text] [Related]
11. Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals. Sasaki K; Kim MH; Imai R Biochem Biophys Res Commun; 2007 Dec; 364(3):633-8. PubMed ID: 17963727 [TBL] [Abstract][Full Text] [Related]
12. Crystal structures of mutant forms of the Bacillus caldolyticus cold shock protein differing in thermal stability. Delbrück H; Mueller U; Perl D; Schmid FX; Heinemann U J Mol Biol; 2001 Oct; 313(2):359-69. PubMed ID: 11800562 [TBL] [Abstract][Full Text] [Related]
13. The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA. Giuliodori AM; Di Pietro F; Marzi S; Masquida B; Wagner R; Romby P; Gualerzi CO; Pon CL Mol Cell; 2010 Jan; 37(1):21-33. PubMed ID: 20129052 [TBL] [Abstract][Full Text] [Related]
14. Keeping signals straight in transcription regulation: specificity determinants for the interaction of a family of conserved bacterial RNA-protein couples. Schilling O; Herzberg C; Hertrich T; Vörsmann H; Jessen D; Hübner S; Titgemeyer F; Stülke J Nucleic Acids Res; 2006; 34(21):6102-15. PubMed ID: 17074746 [TBL] [Abstract][Full Text] [Related]
15. Expression of the Csp protein family upon cold shock and production of tetracycline in Streptomyces aureofaciens. Mikulík K; Khanh-Hoang Q; Halada P; Bezousková S; Benada O; Bêhal V Biochem Biophys Res Commun; 1999 Nov; 265(2):305-10. PubMed ID: 10558862 [TBL] [Abstract][Full Text] [Related]
16. Translation-independent localization of mRNA in E. coli. Nevo-Dinur K; Nussbaum-Shochat A; Ben-Yehuda S; Amster-Choder O Science; 2011 Feb; 331(6020):1081-4. PubMed ID: 21350180 [TBL] [Abstract][Full Text] [Related]
17. [Bacterial cold shock response at the level of DNA transcription, translation and chromosome dynamics]. Golovlev EL Mikrobiologiia; 2003; 72(1):5-13. PubMed ID: 12698785 [TBL] [Abstract][Full Text] [Related]
18. Applications of nucleic acid chaperone activity of CspA and its homologues. Phadtare S; Zhu L; Uemori T; Mukai H; Kato I; Inouye M J Mol Microbiol Biotechnol; 2009; 17(3):110-7. PubMed ID: 19556744 [TBL] [Abstract][Full Text] [Related]
19. Effects of chaperones on mRNA stability and gene expression in Escherichia coli. Yoon H; Hong J; Ryu S J Microbiol Biotechnol; 2008 Feb; 18(2):228-33. PubMed ID: 18309265 [TBL] [Abstract][Full Text] [Related]