BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 16156792)

  • 1. The signature amidase from Sulfolobus solfataricus belongs to the CX3C subgroup of enzymes cleaving both amides and nitriles. Ser195 and Cys145 are predicted to be the active site nucleophiles.
    Cilia E; Fabbri A; Uriani M; Scialdone GG; Ammendola S
    FEBS J; 2005 Sep; 272(18):4716-24. PubMed ID: 16156792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arabidopsis amidase 1, a member of the amidase signature family.
    Neu D; Lehmann T; Elleuche S; Pollmann S
    FEBS J; 2007 Jul; 274(13):3440-51. PubMed ID: 17555521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of active sites in amidase: evolutionary relationship between amide bond- and peptide bond-cleaving enzymes.
    Kobayashi M; Fujiwara Y; Goda M; Komeda H; Shimizu S
    Proc Natl Acad Sci U S A; 1997 Oct; 94(22):11986-91. PubMed ID: 9342349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of mutants of Sulfolobus solfataricus signature amidase able to hydrolyse R-ketoprofen amide.
    Giordano C; Ammendola S
    Protein Pept Lett; 2008; 15(6):617-23. PubMed ID: 18680459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the amino acid residues affecting the catalytic pocket of the Sulfolobus solfataricus signature amidase.
    Elisa C; Sergio A
    Protein Pept Lett; 2010 Feb; 17(2):146-50. PubMed ID: 20214638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oligomerization of Sulfolobus solfataricus signature amidase is promoted by acidic pH and high temperature.
    Scotto D'Abusco A; Casadio R; Tasco G; Giangiacomo L; Giartosio A; Calamia V; Di Marco S; Chiaraluce R; Consalvi V; Scandurra R; Politi L
    Archaea; 2005 Dec; 1(6):411-23. PubMed ID: 16243781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A combined approach of mass spectrometry, molecular modeling, and site-directed mutagenesis highlights key structural features responsible for the thermostability of Sulfolobus solfataricus carboxypeptidase.
    Sommaruga S; De Palma A; Mauri PL; Trisciani M; Basilico F; Martelli PL; Casadio R; Tortora P; Occhipinti E
    Proteins; 2008 Jun; 71(4):1843-52. PubMed ID: 18175312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The catalytic mechanism of amidase also involves nitrile hydrolysis.
    Kobayashi M; Goda M; Shimizu S
    FEBS Lett; 1998 Nov; 439(3):325-8. PubMed ID: 9845347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular and biochemical characterization of the recombinant amidase from hyperthermophilic archaeon Sulfolobus solfataricus.
    Scotto d'Abusco A; Ammendola S; Scandurra R; Politi L
    Extremophiles; 2001 Jun; 5(3):183-92. PubMed ID: 11453462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using directed evolution to probe the substrate specificity of mandelamide hydrolase.
    Wang PF; Yep A; Kenyon GL; McLeish MJ
    Protein Eng Des Sel; 2009 Feb; 22(2):103-10. PubMed ID: 19074156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic hydrolysis of cyanohydrins with recombinant nitrile hydratase and amidase from Rhodococcus erythropolis.
    Reisinger Ch; Osprian I; Glieder A; Schoemaker HE; Griengl H; Schwab H
    Biotechnol Lett; 2004 Nov; 26(21):1675-80. PubMed ID: 15604819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfolobus solfataricus protein disulphide oxidoreductase: insight into the roles of its redox sites.
    Limauro D; Saviano M; Galdi I; Rossi M; Bartolucci S; Pedone E
    Protein Eng Des Sel; 2009 Jan; 22(1):19-26. PubMed ID: 18988690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the catalytic mechanism of the Bcp family: functional and structural analysis of Bcp1 from Sulfolobus solfataricus.
    D'Ambrosio K; Limauro D; Pedone E; Galdi I; Pedone C; Bartolucci S; De Simone G
    Proteins; 2009 Sep; 76(4):995-1006. PubMed ID: 19338062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. R-stereoselective amidase from Rhodococcus erythropolis No. 7 acting on 4-chloro-3-hydroxybutyramide.
    Park HJ; Uhm KN; Kim HK
    J Microbiol Biotechnol; 2008 Mar; 18(3):552-9. PubMed ID: 18388476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrile biotransformation for highly enantioselective synthesis of 3-substituted 2,2-dimethylcyclopropanecarboxylic acids and amides.
    Wang MX; Feng GQ
    J Org Chem; 2003 Jan; 68(2):621-4. PubMed ID: 12530896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermophilic archaeal enzymes and applications in biocatalysis.
    Littlechild JA
    Biochem Soc Trans; 2011 Jan; 39(1):155-8. PubMed ID: 21265764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical characterization and homology modeling of a purine-specific ribonucleoside hydrolase from the archaeon Sulfolobus solfataricus: insights into mechanisms of protein stabilization.
    Porcelli M; Peluso I; Marabotti A; Facchiano A; Cacciapuoti G
    Arch Biochem Biophys; 2009 Mar; 483(1):55-65. PubMed ID: 19121283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mandelamide hydrolase from Pseudomonas putida: characterization of a new member of the amidase signature family.
    Gopalakrishna KN; Stewart BH; Kneen MM; Andricopulo AD; Kenyon GL; McLeish MJ
    Biochemistry; 2004 Jun; 43(24):7725-35. PubMed ID: 15196015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An acetylase with relaxed specificity catalyses protein N-terminal acetylation in Sulfolobus solfataricus.
    Mackay DT; Botting CH; Taylor GL; White MF
    Mol Microbiol; 2007 Jun; 64(6):1540-8. PubMed ID: 17511810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-, temperature- and ion-dependent oligomerization of Sulfolobus solfataricus recombinant amidase: a study with site-specific mutants.
    Politi L; Chiancone E; Giangiacomo L; Cervoni L; Scotto d'Abusco A; Scorsino S; Scandurra R
    Archaea; 2009 Feb; 2(4):221-31. PubMed ID: 19478917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.