BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 16156792)

  • 21. Probing the catalytically essential residues of the alpha-L-fucosidase from the hyperthermophilic archaeon Sulfolobus solfataricus.
    Cobucci-Ponzano B; Mazzone M; Rossi M; Moracci M
    Biochemistry; 2005 Apr; 44(16):6331-42. PubMed ID: 15835922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloning, sequence analysis and expression of the gene encoding a novel wide-spectrum amidase belonging to the amidase signature superfamily from Achromobacter xylosoxidans.
    Cai G; Zhu S; Wang X; Jiang W
    FEMS Microbiol Lett; 2005 Aug; 249(1):15-21. PubMed ID: 16002239
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structure and biochemical properties of the D-arabinose dehydrogenase from Sulfolobus solfataricus.
    Brouns SJ; Turnbull AP; Willemen HL; Akerboom J; van der Oost J
    J Mol Biol; 2007 Aug; 371(5):1249-60. PubMed ID: 17610898
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural and enzymatic investigation of the Sulfolobus solfataricus uridylate kinase shows competitive UTP inhibition and the lack of GTP stimulation.
    Jensen KS; Johansson E; Jensen KF
    Biochemistry; 2007 Mar; 46(10):2745-57. PubMed ID: 17297917
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding promiscuous amidase activity of an esterase from Bacillus subtilis.
    Kourist R; Bartsch S; Fransson L; Hult K; Bornscheuer UT
    Chembiochem; 2008 Jan; 9(1):67-9. PubMed ID: 18022973
    [No Abstract]   [Full Text] [Related]  

  • 26. Nocardia globerula NHB-2: a versatile nitrile-degrading organism.
    Bhalla TC; Kumar H
    Can J Microbiol; 2005 Aug; 51(8):705-8. PubMed ID: 16234868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Cloning the amidase gene from Rhodococcus rhodochrous M18 and its expression in Escherichia coli].
    Riabchenko LE; Podcherniaev DA; Kotlova EK; Ianenko AS
    Genetika; 2006 Aug; 42(8):1075-82. PubMed ID: 17025157
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification and characterization of 1-Cys peroxiredoxin from Sulfolobus solfataricus and its involvement in the response to oxidative stress.
    Limauro D; Pedone E; Pirone L; Bartolucci S
    FEBS J; 2006 Feb; 273(4):721-31. PubMed ID: 16441659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Support for a three-dimensional structure predicting a Cys-Glu-Lys catalytic triad for Pseudomonas aeruginosa amidase comes from site-directed mutagenesis and mutations altering substrate specificity.
    Novo C; Farnaud S; Tata R; Clemente A; Brown PR
    Biochem J; 2002 Aug; 365(Pt 3):731-8. PubMed ID: 11955282
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel hyperthermostable 5'-deoxy-5'-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus.
    Cacciapuoti G; Forte S; Moretti MA; Brio A; Zappia V; Porcelli M
    FEBS J; 2005 Apr; 272(8):1886-99. PubMed ID: 15819883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural basis of the destabilization produced by an amino-terminal tag in the beta-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus.
    Ausili A; Cobucci-Ponzano B; Di Lauro B; D'Avino R; Scirè A; Rossi M; Tanfani F; Moracci M
    Biochimie; 2006 Jul; 88(7):807-17. PubMed ID: 16494988
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of a thermostable and enantioselective amidase from the thermoacidophilic archaeon Sulfolobus tokodaii strain 7.
    Suzuki Y; Ohta H
    Protein Expr Purif; 2006 Feb; 45(2):368-73. PubMed ID: 16125409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A phosphohexomutase from the archaeon Sulfolobus solfataricus is covalently modified by phosphorylation on serine.
    Ray WK; Keith SM; DeSantis AM; Hunt JP; Larson TJ; Helm RF; Kennelly PJ
    J Bacteriol; 2005 Jun; 187(12):4270-5. PubMed ID: 15937189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pyrimidine-specific ribonucleoside hydrolase from the archaeon Sulfolobus solfataricus--biochemical characterization and homology modeling.
    Porcelli M; Concilio L; Peluso I; Marabotti A; Facchiano A; Cacciapuoti G
    FEBS J; 2008 Apr; 275(8):1900-14. PubMed ID: 18355316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure and characterization of amidase from Rhodococcus sp. N-771: Insight into the molecular mechanism of substrate recognition.
    Ohtaki A; Murata K; Sato Y; Noguchi K; Miyatake H; Dohmae N; Yamada K; Yohda M; Odaka M
    Biochim Biophys Acta; 2010 Jan; 1804(1):184-92. PubMed ID: 19819352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering of Pseudomonas aeruginosa lipase by directed evolution for enhanced amidase activity: mechanistic implication for amide hydrolysis by serine hydrolases.
    Nakagawa Y; Hasegawa A; Hiratake J; Sakata K
    Protein Eng Des Sel; 2007 Jul; 20(7):339-46. PubMed ID: 17616559
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitrilase catalyzes amide hydrolysis as well as nitrile hydrolysis.
    Kobayashi M; Goda M; Shimizu S
    Biochem Biophys Res Commun; 1998 Dec; 253(3):662-6. PubMed ID: 9918784
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and primary characterization of an amidase from Rhodococcus rhodochrous.
    Kotlova EK; Chestukhina GG; Astaurova OB; Leonova TE; Yanenko AS; Debabov VG
    Biochemistry (Mosc); 1999 Apr; 64(4):384-9. PubMed ID: 10231590
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial hydrolysis of organic nitriles and amides.
    Ingvorsen K; Yde B; Godtfredsen SE; Tsuchiya RT
    Ciba Found Symp; 1988; 140():16-31. PubMed ID: 3073055
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrazide synthesis: novel substrate specificity of amidase.
    Kobayashi M; Goda M; Shimizu S
    Biochem Biophys Res Commun; 1999 Mar; 256(2):415-8. PubMed ID: 10079199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.