These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 16157467)
1. Some physiological correlates to regular and irregular phonation at the end of an utterance. Slifka J J Voice; 2006 Jun; 20(2):171-86. PubMed ID: 16157467 [TBL] [Abstract][Full Text] [Related]
2. A methodological study of hemilaryngeal phonation. Jiang JJ; Titze IR Laryngoscope; 1993 Aug; 103(8):872-82. PubMed ID: 8361290 [TBL] [Abstract][Full Text] [Related]
3. The pitch rise paradigm: a new task for real-time endoscopy of non-stationary phonation. Rasp O; Lohscheller J; Doellinger M; Eysholdt U; Hoppe U Folia Phoniatr Logop; 2006; 58(3):175-85. PubMed ID: 16636565 [TBL] [Abstract][Full Text] [Related]
4. [Glottal and supraglottal configuration during whispering]. Fleischer S; Kothe C; Hess M Laryngorhinootologie; 2007 Apr; 86(4):271-5. PubMed ID: 17219333 [TBL] [Abstract][Full Text] [Related]
5. Dynamic MRI of larynx and vocal fold vibrations in normal phonation. Ahmad M; Dargaud J; Morin A; Cotton F J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366 [TBL] [Abstract][Full Text] [Related]
6. Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study. Titze IR; Laukkanen AM Logoped Phoniatr Vocol; 2007; 32(4):147-56. PubMed ID: 17917981 [TBL] [Abstract][Full Text] [Related]
7. The effect of whisper and creak vocal mechanisms on vocal tract resonances. Swerdlin Y; Smith J; Wolfe J J Acoust Soc Am; 2010 Apr; 127(4):2590-8. PubMed ID: 20370040 [TBL] [Abstract][Full Text] [Related]
8. High-speed registration of phonation-related glottal area variation during artificial lengthening of the vocal tract. Laukkanen AM; Pulakka H; Alku P; Vilkman E; Hertegård S; Lindestad PA; Larsson H; Granqvist S Logoped Phoniatr Vocol; 2007; 32(4):157-64. PubMed ID: 17917980 [TBL] [Abstract][Full Text] [Related]
9. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation. Zheng X; Bielamowicz S; Luo H; Mittal R Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730 [TBL] [Abstract][Full Text] [Related]
10. Electroglottographic evaluation of gender and vowel effects during modal and vocal fry phonation. Chen Y; Robb MP; Gilbert HR J Speech Lang Hear Res; 2002 Oct; 45(5):821-9. PubMed ID: 12381041 [TBL] [Abstract][Full Text] [Related]
11. Estimation of impact stress using an aeroelastic model of voice production. Horácek J; Laukkanen AM; Sidlof P Logoped Phoniatr Vocol; 2007; 32(4):185-92. PubMed ID: 17990190 [TBL] [Abstract][Full Text] [Related]
12. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds. Tao C; Zhang Y; Hottinger DG; Jiang JJ J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863 [TBL] [Abstract][Full Text] [Related]
13. The influence of epilarynx area on vocal fold dynamics. Döllinger M; Berry DA; Montequin DW Otolaryngol Head Neck Surg; 2006 Nov; 135(5):724-729. PubMed ID: 17071302 [TBL] [Abstract][Full Text] [Related]
14. Optimized transformation of the glottal motion into a mechanical model. Triep M; Brücker C; Stingl M; Döllinger M Med Eng Phys; 2011 Mar; 33(2):210-7. PubMed ID: 21115384 [TBL] [Abstract][Full Text] [Related]
15. A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation. Doellinger M; Berry DA; Berke GS Laryngoscope; 2005 Sep; 115(9):1646-54. PubMed ID: 16148711 [TBL] [Abstract][Full Text] [Related]
16. Soft phonation in the male singing voice: a preliminary study. Miller DG; Schutte HK; Doing J J Voice; 2001 Dec; 15(4):483-91. PubMed ID: 11792024 [TBL] [Abstract][Full Text] [Related]
17. Measurement of vocal fold collision forces during phonation: methods and preliminary data. Gunter HE; Howe RD; Zeitels SM; Kobler JB; Hillman RE J Speech Lang Hear Res; 2005 Jun; 48(3):567-76. PubMed ID: 16197273 [TBL] [Abstract][Full Text] [Related]
18. Modeling the biomechanical influence of epilaryngeal stricture on the vocal folds: a low-dimensional model of vocal-ventricular fold coupling. Moisik SR; Esling JH J Speech Lang Hear Res; 2014 Apr; 57(2):S687-704. PubMed ID: 24687007 [TBL] [Abstract][Full Text] [Related]
19. Influence of glottal closure configuration on vocal efficacy in young normal-speaking women. Schneider B; Bigenzahn W J Voice; 2003 Dec; 17(4):468-80. PubMed ID: 14740929 [TBL] [Abstract][Full Text] [Related]