These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 16157595)
1. On the relationships of substrate orientation, hydrogen abstraction, and product stereochemistry in single and double dioxygenations by soybean lipoxygenase-1 and its Ala542Gly mutant. Coffa G; Imber AN; Maguire BC; Laxmikanthan G; Schneider C; Gaffney BJ; Brash AR J Biol Chem; 2005 Nov; 280(46):38756-66. PubMed ID: 16157595 [TBL] [Abstract][Full Text] [Related]
2. Probing the substrate alignment at the active site of 15-lipoxygenases by targeted substrate modification and site-directed mutagenesis. Evidence for an inverse substrate orientation. Schwarz K; Borngräber S; Anton M; Kuhn H Biochemistry; 1998 Nov; 37(44):15327-35. PubMed ID: 9799493 [TBL] [Abstract][Full Text] [Related]
3. A single active site residue directs oxygenation stereospecificity in lipoxygenases: stereocontrol is linked to the position of oxygenation. Coffa G; Brash AR Proc Natl Acad Sci U S A; 2004 Nov; 101(44):15579-84. PubMed ID: 15496467 [TBL] [Abstract][Full Text] [Related]
4. Catalytic convergence of manganese and iron lipoxygenases by replacement of a single amino acid. Wennman A; Jernerén F; Hamberg M; Oliw EH J Biol Chem; 2012 Sep; 287(38):31757-65. PubMed ID: 22822060 [TBL] [Abstract][Full Text] [Related]
5. Formation of a cyclopropyl epoxide via a leukotriene A synthase-related pathway in an anaerobic reaction of soybean lipoxygenase-1 with 15S-hydroperoxyeicosatetraenoic acid: evidence that oxygen access is a determinant of secondary reactions with fatty acid hydroperoxides. Zheng Y; Brash AR J Biol Chem; 2010 Apr; 285(18):13427-36. PubMed ID: 20194505 [TBL] [Abstract][Full Text] [Related]
6. Investigation of substrate binding and product stereochemistry issues in two linoleate 9-lipoxygenases. Boeglin WE; Itoh A; Zheng Y; Coffa G; Howe GA; Brash AR Lipids; 2008 Nov; 43(11):979-87. PubMed ID: 18795358 [TBL] [Abstract][Full Text] [Related]
7. Oxygenation reactions catalyzed by the F557V mutant of soybean lipoxygenase-1: Evidence for two orientations of substrate binding. Hershelman D; Kahler KM; Price MJ; Lu I; Fu Y; Plumeri PA; Karaisz F; Bassett NF; Findeis PM; Clapp CH Arch Biochem Biophys; 2019 Oct; 674():108082. PubMed ID: 31473191 [TBL] [Abstract][Full Text] [Related]
8. A bisallylic mini-lipoxygenase from cyanobacterium Cyanothece sp. that has an iron as cofactor. Andreou A; Göbel C; Hamberg M; Feussner I J Biol Chem; 2010 May; 285(19):14178-86. PubMed ID: 20223828 [TBL] [Abstract][Full Text] [Related]
10. Soybean lipoxygenase-1 enzymically forms both (9S)- and (13S)-hydroperoxides from linoleic acid by a pH-dependent mechanism. Gardner HW Biochim Biophys Acta; 1989 Feb; 1001(3):274-81. PubMed ID: 2492826 [TBL] [Abstract][Full Text] [Related]
11. The lipoxygenase gene ALOXE3 implicated in skin differentiation encodes a hydroperoxide isomerase. Yu Z; Schneider C; Boeglin WE; Marnett LJ; Brash AR Proc Natl Acad Sci U S A; 2003 Aug; 100(16):9162-7. PubMed ID: 12881489 [TBL] [Abstract][Full Text] [Related]
12. The crystal structure of Pseudomonas aeruginosa lipoxygenase Ala420Gly mutant explains the improved oxygen affinity and the altered reaction specificity. Kalms J; Banthiya S; Galemou Yoga E; Hamberg M; Holzhutter HG; Kuhn H; Scheerer P Biochim Biophys Acta Mol Cell Biol Lipids; 2017 May; 1862(5):463-473. PubMed ID: 28093240 [TBL] [Abstract][Full Text] [Related]
13. Structural and functional basis of phospholipid oxygenase activity of bacterial lipoxygenase from Pseudomonas aeruginosa. Banthiya S; Kalms J; Galemou Yoga E; Ivanov I; Carpena X; Hamberg M; Kuhn H; Scheerer P Biochim Biophys Acta; 2016 Nov; 1861(11):1681-1692. PubMed ID: 27500637 [TBL] [Abstract][Full Text] [Related]
14. Tryptophan 500 and arginine 707 define product and substrate active site binding in soybean lipoxygenase-1. Ruddat VC; Mogul R; Chorny I; Chen C; Perrin N; Whitman S; Kenyon V; Jacobson MP; Bernasconi CF; Holman TR Biochemistry; 2004 Oct; 43(41):13063-71. PubMed ID: 15476400 [TBL] [Abstract][Full Text] [Related]
15. Alterations of lipoxygenase specificity by targeted substrate modification and site-directed mutagenesis. Walther M; Ivanov I; Myagkova G; Kuhn H Chem Biol; 2001 Aug; 8(8):779-90. PubMed ID: 11514227 [TBL] [Abstract][Full Text] [Related]
16. The structural basis for specificity in lipoxygenase catalysis. Newcomer ME; Brash AR Protein Sci; 2015 Mar; 24(3):298-309. PubMed ID: 25524168 [TBL] [Abstract][Full Text] [Related]
17. Arachidonate 12-lipoxygenase purified from porcine leukocytes by immunoaffinity chromatography and its reactivity with hydroperoxyeicosatetraenoic acids. Yokoyama C; Shinjo F; Yoshimoto T; Yamamoto S; Oates JA; Brash AR J Biol Chem; 1986 Dec; 261(35):16714-21. PubMed ID: 3782139 [TBL] [Abstract][Full Text] [Related]
18. Understanding the Mechanism of the Hydrogen Abstraction from Arachidonic Acid Catalyzed by the Human Enzyme 15-Lipoxygenase-2. A Quantum Mechanics/Molecular Mechanics Free Energy Simulation. Suardíaz R; Jambrina PG; Masgrau L; González-Lafont À; Rosta E; Lluch JM J Chem Theory Comput; 2016 Apr; 12(4):2079-90. PubMed ID: 26918937 [TBL] [Abstract][Full Text] [Related]
19. An unusual isotope effect on substrate inhibition in the oxidation of arachidonic acid by lipoxygenase. Peng S; van der Donk WA J Am Chem Soc; 2003 Jul; 125(30):8988-9. PubMed ID: 15369335 [TBL] [Abstract][Full Text] [Related]
20. Determination of stereochemistry in the fatty acid hydroperoxide products of lipoxygenase catalysis. Andre JC; Funk MO Anal Biochem; 1986 Nov; 158(2):316-21. PubMed ID: 3101541 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]