These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 16157674)
1. Nucleotide diversity and linkage disequilibrium in cold-hardiness- and wood quality-related candidate genes in Douglas fir. Krutovsky KV; Neale DB Genetics; 2005 Dec; 171(4):2029-41. PubMed ID: 16157674 [TBL] [Abstract][Full Text] [Related]
2. An Axiom SNP genotyping array for Douglas-fir. Howe GT; Jayawickrama K; Kolpak SE; Kling J; Trappe M; Hipkins V; Ye T; Guida S; Cronn R; Cushman SA; McEvoy S BMC Genomics; 2020 Jan; 21(1):9. PubMed ID: 31900111 [TBL] [Abstract][Full Text] [Related]
3. Association genetics of coastal Douglas fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-hardiness related traits. Eckert AJ; Bower AD; Wegrzyn JL; Pande B; Jermstad KD; Krutovsky KV; St Clair JB; Neale DB Genetics; 2009 Aug; 182(4):1289-302. PubMed ID: 19487566 [TBL] [Abstract][Full Text] [Related]
4. Multilocus patterns of nucleotide diversity and divergence reveal positive selection at candidate genes related to cold hardiness in coastal Douglas Fir (Pseudotsuga menziesii var. menziesii). Eckert AJ; Wegrzyn JL; Pande B; Jermstad KD; Lee JM; Liechty JD; Tearse BR; Krutovsky KV; Neale DB Genetics; 2009 Sep; 183(1):289-98. PubMed ID: 19596906 [TBL] [Abstract][Full Text] [Related]
5. A catalogue of putative unique transcripts from Douglas-fir (Pseudotsuga menziesii) based on 454 transcriptome sequencing of genetically diverse, drought stressed seedlings. Müller T; Ensminger I; Schmid KJ BMC Genomics; 2012 Nov; 13():673. PubMed ID: 23190494 [TBL] [Abstract][Full Text] [Related]
6. High levels of nucleotide diversity and fast decline of linkage disequilibrium in rye (Secale cereale L.) genes involved in frost response. Li Y; Haseneyer G; Schön CC; Ankerst D; Korzun V; Wilde P; Bauer E BMC Plant Biol; 2011 Jan; 11():6. PubMed ID: 21219606 [TBL] [Abstract][Full Text] [Related]
8. Dissecting the Polygenic Basis of Cold Adaptation Using Genome-Wide Association of Traits and Environmental Data in Douglas-fir. De La Torre AR; Wilhite B; Puiu D; St Clair JB; Crepeau MW; Salzberg SL; Langley CH; Allen B; Neale DB Genes (Basel); 2021 Jan; 12(1):. PubMed ID: 33477542 [TBL] [Abstract][Full Text] [Related]
9. [Nucleotide diversity and linkage disequilibrium of adaptive significant genes in Larix (Pinaceae)]. Semerikov VL; Semerikova SA; Polezhaeva MA Genetika; 2013 Sep; 49(9):1055-64. PubMed ID: 25486773 [TBL] [Abstract][Full Text] [Related]
10. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. Ching A; Caldwell KS; Jung M; Dolan M; Smith OS; Tingey S; Morgante M; Rafalski AJ BMC Genet; 2002 Oct; 3():19. PubMed ID: 12366868 [TBL] [Abstract][Full Text] [Related]
11. High-density genetic linkage map construction and cane cold hardiness QTL mapping for Vitis based on restriction site-associated DNA sequencing. Su K; Xing H; Guo Y; Zhao F; Liu Z; Li K; Li Y; Guo X BMC Genomics; 2020 Jun; 21(1):419. PubMed ID: 32571215 [TBL] [Abstract][Full Text] [Related]
12. Allelic variation in a cellulose synthase gene (PtoCesA4) associated with growth and wood properties in Populus tomentosa. Du Q; Xu B; Pan W; Gong C; Wang Q; Tian J; Li B; Zhang D G3 (Bethesda); 2013 Nov; 3(11):2069-84. PubMed ID: 24048648 [TBL] [Abstract][Full Text] [Related]
13. A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation. Howe GT; Yu J; Knaus B; Cronn R; Kolpak S; Dolan P; Lorenz WW; Dean JF BMC Genomics; 2013 Feb; 14():137. PubMed ID: 23445355 [TBL] [Abstract][Full Text] [Related]
14. DNA sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. González-Martínez SC; Ersoz E; Brown GR; Wheeler NC; Neale DB Genetics; 2006 Mar; 172(3):1915-26. PubMed ID: 16387885 [TBL] [Abstract][Full Text] [Related]
15. Spatially heterogeneous selection and inter-varietal differentiation maintain population structure and local adaptation in a widespread conifer. Peláez P; Lorenzana GP; Baesen K; Montes JR; De La Torre AR BMC Ecol Evol; 2024 Sep; 24(1):117. PubMed ID: 39227766 [TBL] [Abstract][Full Text] [Related]
16. Nucleotide diversity and linkage disequilibrium in 11 expressed resistance candidate genes in Lolium perenne. Xing Y; Frei U; Schejbel B; Asp T; Lübberstedt T BMC Plant Biol; 2007 Aug; 7():43. PubMed ID: 17683574 [TBL] [Abstract][Full Text] [Related]
17. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas fir. III. Quantitative trait loci-by-environment interactions. Jermstad KD; Bassoni DL; Jech KS; Ritchie GA; Wheeler NC; Neale DB Genetics; 2003 Nov; 165(3):1489-506. PubMed ID: 14668397 [TBL] [Abstract][Full Text] [Related]
18. Impact of climate change on cold hardiness of Douglas-fir (Pseudotsuga menziesii): environmental and genetic considerations. Bansal S; St Clair JB; Harrington CA; Gould PJ Glob Chang Biol; 2015 Oct; 21(10):3814-26. PubMed ID: 25920066 [TBL] [Abstract][Full Text] [Related]
19. Association of allelic variation in PtoXET16A with growth and wood properties in Populus tomentosa. Wang B; Zhang D Int J Mol Sci; 2014 Sep; 15(9):16949-74. PubMed ID: 25250912 [TBL] [Abstract][Full Text] [Related]
20. DNA polymorphisms and haplotype patterns of transcription factors involved in barley endosperm development are associated with key agronomic traits. Haseneyer G; Stracke S; Piepho HP; Sauer S; Geiger HH; Graner A BMC Plant Biol; 2010 Jan; 10():5. PubMed ID: 20064201 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]