These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The Zea mays sexual compatibility gene ga2: naturally occurring alleles, their distribution, and role in reproductive isolation. Kermicle JL; Evans MM J Hered; 2010; 101(6):737-49. PubMed ID: 20696670 [TBL] [Abstract][Full Text] [Related]
3. Genetic and cellular analysis of cross-incompatibility in Zea mays. Lu Y; Kermicle JL; Evans MM Plant Reprod; 2014 Mar; 27(1):19-29. PubMed ID: 24193168 [TBL] [Abstract][Full Text] [Related]
4. Pollination between maize and teosinte: an important determinant of gene flow in Mexico. Baltazar BM; de Jesús Sánchez-Gonzalez J; de la Cruz-Larios L; Schoper JB Theor Appl Genet; 2005 Feb; 110(3):519-26. PubMed ID: 15592808 [TBL] [Abstract][Full Text] [Related]
5. A pollen expressed PME gene at Tcb1 locus confers maize unilateral cross-incompatibility. Zhang Z; Li K; Zhang T; Chen H Plant Biotechnol J; 2023 Mar; 21(3):454-456. PubMed ID: 36382905 [No Abstract] [Full Text] [Related]
6. A pistil-expressed pectin methylesterase confers cross-incompatibility between strains of Zea mays. Lu Y; Hokin SA; Kermicle JL; Hartwig T; Evans MMS Nat Commun; 2019 May; 10(1):2304. PubMed ID: 31127100 [TBL] [Abstract][Full Text] [Related]
7. Pollen-Mediated Gene Flow in Maize: Implications for Isolation Requirements and Coexistence in Mexico, the Center of Origin of Maize. Baltazar BM; Castro Espinoza L; Espinoza Banda A; de la Fuente Martínez JM; Garzón Tiznado JA; González García J; Gutiérrez MA; Guzmán Rodríguez JL; Heredia Díaz O; Horak MJ; Madueño Martínez JI; Schapaugh AW; Stojšin D; Uribe Montes HR; Zavala García F PLoS One; 2015; 10(7):e0131549. PubMed ID: 26162097 [TBL] [Abstract][Full Text] [Related]
8. Insights into the molecular control of cross-incompatibility in Zea mays. Lu Y; Moran Lauter AN; Makkena S; Scott MP; Evans MMS Plant Reprod; 2020 Dec; 33(3-4):117-128. PubMed ID: 32865620 [TBL] [Abstract][Full Text] [Related]
9. Spontaneous hybridization between maize and teosinte. Ellstrand NC; Garner LC; Hegde S; Guadagnuolo R; Blancas L J Hered; 2007; 98(2):183-7. PubMed ID: 17400586 [TBL] [Abstract][Full Text] [Related]
10. Teosinte in Europe - Searching for the Origin of a Novel Weed. Trtikova M; Lohn A; Binimelis R; Chapela I; Oehen B; Zemp N; Widmer A; Hilbeck A Sci Rep; 2017 May; 7(1):1560. PubMed ID: 28484216 [TBL] [Abstract][Full Text] [Related]
11. Genetic diversity and population structure of teosinte. Fukunaga K; Hill J; Vigouroux Y; Matsuoka Y; Sanchez G J; Liu K; Buckler ES; Doebley J Genetics; 2005 Apr; 169(4):2241-54. PubMed ID: 15687282 [TBL] [Abstract][Full Text] [Related]
12. Identification of teosinte, maize, and Tripsacum in Mesoamerica by using pollen, starch grains, and phytoliths. Holst I; Moreno JE; Piperno DR Proc Natl Acad Sci U S A; 2007 Nov; 104(45):17608-13. PubMed ID: 17978176 [TBL] [Abstract][Full Text] [Related]
13. Selective sorting of ancestral introgression in maize and teosinte along an elevational cline. Calfee E; Gates D; Lorant A; Perkins MT; Coop G; Ross-Ibarra J PLoS Genet; 2021 Oct; 17(10):e1009810. PubMed ID: 34634032 [TBL] [Abstract][Full Text] [Related]
14. A pair of non-Mendelian genes at the Ga2 locus confer unilateral cross-incompatibility in maize. Chen Z; Zhang Z; Zhang H; Li K; Cai D; Zhao L; Liu J; Chen H Nat Commun; 2022 Apr; 13(1):1993. PubMed ID: 35422051 [TBL] [Abstract][Full Text] [Related]
15. A PECTIN METHYLESTERASE gene at the maize Ga1 locus confers male function in unilateral cross-incompatibility. Zhang Z; Zhang B; Chen Z; Zhang D; Zhang H; Wang H; Zhang Y; Cai D; Liu J; Xiao S; Huo Y; Liu J; Zhang L; Wang M; Liu X; Xue Y; Zhao L; Zhou Y; Chen H Nat Commun; 2018 Sep; 9(1):3678. PubMed ID: 30202064 [TBL] [Abstract][Full Text] [Related]
16. The genetics of maize evolution. Doebley J Annu Rev Genet; 2004; 38():37-59. PubMed ID: 15568971 [TBL] [Abstract][Full Text] [Related]
17. Teosinte Pollen Drive guides maize diversification and domestication by RNAi. Berube B; Ernst E; Cahn J; Roche B; de Santis Alves C; Lynn J; Scheben A; Grimanelli D; Siepel A; Ross-Ibarra J; Kermicle J; Martienssen RA Nature; 2024 Sep; 633(8029):380-388. PubMed ID: 39112710 [TBL] [Abstract][Full Text] [Related]
18. The PTI1-like kinase ZmPti1a from maize (Zea mays L.) co-localizes with callose at the plasma membrane of pollen and facilitates a competitive advantage to the male gametophyte. Herrmann MM; Pinto S; Kluth J; Wienand U; Lorbiecke R BMC Plant Biol; 2006 Oct; 6():22. PubMed ID: 17022830 [TBL] [Abstract][Full Text] [Related]
19. Influence of cryptic population structure on observed mating patterns in the wild progenitor of maize (Zea mays ssp. parviglumis). Hufford MB; Gepts P; Ross-Ibarra J Mol Ecol; 2011 Jan; 20(1):46-55. PubMed ID: 21070423 [TBL] [Abstract][Full Text] [Related]
20. Teosinte as a model system for population and ecological genomics. Hufford MB; Bilinski P; Pyhäjärvi T; Ross-Ibarra J Trends Genet; 2012 Dec; 28(12):606-15. PubMed ID: 23021022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]