These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 16157882)

  • 1. Characterization of a possible amyloidogenic precursor in glutamine-repeat neurodegenerative diseases.
    Armen RS; Bernard BM; Day R; Alonso DO; Daggett V
    Proc Natl Acad Sci U S A; 2005 Sep; 102(38):13433-8. PubMed ID: 16157882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyglutamine expansion mutation yields a pathological epitope linked to nucleation of protein aggregate: determinant of Huntington's disease onset.
    Sugaya K; Matsubara S; Kagamihara Y; Kawata A; Hayashi H
    PLoS One; 2007 Jul; 2(7):e635. PubMed ID: 17653262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of two distinct beta2-microglobulin unfolding intermediates that may lead to amyloid fibrils of different morphology.
    Armen RS; Daggett V
    Biochemistry; 2005 Dec; 44(49):16098-107. PubMed ID: 16331970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Length-dependent conformational transitions of polyglutamine repeats as molecular origin of fibril initiation.
    Heck BS; Doll F; Hauser K
    Biophys Chem; 2014 Jan; 185():47-57. PubMed ID: 24333917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyglutamine homopolymers having 8-45 residues form slablike beta-crystallite assemblies.
    Sharma D; Shinchuk LM; Inouye H; Wetzel R; Kirschner DA
    Proteins; 2005 Nov; 61(2):398-411. PubMed ID: 16114051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural regulation of a peptide-conjugated graft copolymer: a simple model for amyloid formation.
    Koga T; Taguchi K; Kobuke Y; Kinoshita T; Higuchi M
    Chemistry; 2003 Mar; 9(5):1146-56. PubMed ID: 12596151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of chain length on the aggregation of model polyglutamine peptides: molecular dynamics simulations.
    Marchut AJ; Hall CK
    Proteins; 2007 Jan; 66(1):96-109. PubMed ID: 17068817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A toxic monomeric conformer of the polyglutamine protein.
    Nagai Y; Inui T; Popiel HA; Fujikake N; Hasegawa K; Urade Y; Goto Y; Naiki H; Toda T
    Nat Struct Mol Biol; 2007 Apr; 14(4):332-40. PubMed ID: 17369839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomy of an amyloidogenic intermediate: conversion of beta-sheet to alpha-sheet structure in transthyretin at acidic pH.
    Armen RS; Alonso DO; Daggett V
    Structure; 2004 Oct; 12(10):1847-63. PubMed ID: 15458633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alpha-sheet: The toxic conformer in amyloid diseases?
    Daggett V
    Acc Chem Res; 2006 Sep; 39(9):594-602. PubMed ID: 16981675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the protein context on the polyglutamine length-dependent elongation of amyloid fibrils.
    Huynen C; Willet N; Buell AK; Duwez AS; Jerôme C; Dumoulin M
    Biochim Biophys Acta; 2015 Mar; 1854(3):239-48. PubMed ID: 25489872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the aggregation mechanism of polyglutamine peptides using replica exchange molecular dynamics simulations.
    Nakano M; Ebina K; Tanaka S
    J Mol Model; 2013 Apr; 19(4):1627-39. PubMed ID: 23288093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative characterization of short monomeric polyglutamine peptides by replica exchange molecular dynamics simulation.
    Nakano M; Watanabe H; Rothstein SM; Tanaka S
    J Phys Chem B; 2010 May; 114(20):7056-61. PubMed ID: 20441177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pauling and Corey's alpha-pleated sheet structure may define the prefibrillar amyloidogenic intermediate in amyloid disease.
    Armen RS; DeMarco ML; Alonso DO; Daggett V
    Proc Natl Acad Sci U S A; 2004 Aug; 101(32):11622-7. PubMed ID: 15280548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational study of the fibril organization of polyglutamine repeats reveals a common motif identified in beta-helices.
    Zanuy D; Gunasekaran K; Lesk AM; Nussinov R
    J Mol Biol; 2006 Apr; 358(1):330-45. PubMed ID: 16503338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins.
    Meredith SC
    Ann N Y Acad Sci; 2005 Dec; 1066():181-221. PubMed ID: 16533927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyglutamine Fibrils: New Insights into Antiparallel β-Sheet Conformational Preference and Side Chain Structure.
    Punihaole D; Workman RJ; Hong Z; Madura JD; Asher SA
    J Phys Chem B; 2016 Mar; 120(12):3012-26. PubMed ID: 26947327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipids enhance apolipoprotein C-II-derived amyloidogenic peptide oligomerization but inhibit fibril formation.
    Hung A; Griffin MD; Howlett GJ; Yarovsky I
    J Phys Chem B; 2009 Jul; 113(28):9447-53. PubMed ID: 19537801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggregation of proteins with expanded glutamine and alanine repeats of the glutamine-rich and asparagine-rich domains of Sup35 and of the amyloid beta-peptide of amyloid plaques.
    Perutz MF; Pope BJ; Owen D; Wanker EE; Scherzinger E
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5596-600. PubMed ID: 11960015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Architecture of polyglutamine-containing fibrils from time-resolved fluorescence decay.
    Röthlein C; Miettinen MS; Borwankar T; Bürger J; Mielke T; Kumke MU; Ignatova Z
    J Biol Chem; 2014 Sep; 289(39):26817-26828. PubMed ID: 25092288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.