These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 16158103)

  • 1. Mononuclear nonheme ferric-peroxo complex in aldehyde deformylation.
    Annaraj J; Suh Y; Seo MS; Kim SO; Nam W
    Chem Commun (Camb); 2005 Sep; (36):4529-31. PubMed ID: 16158103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic mononuclear nonheme iron-oxygen intermediates.
    Nam W
    Acc Chem Res; 2015 Aug; 48(8):2415-23. PubMed ID: 26203519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of Aldehyde to Alkane by a Peroxoiron(III) Complex: A Functional Model for the Cyanobacterial Aldehyde-Deformylating Oxygenase.
    Shokri A; Que L
    J Am Chem Soc; 2015 Jun; 137(24):7686-91. PubMed ID: 26030345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactivity of a cobalt(III)-peroxo complex in oxidative nucleophilic reactions.
    Jo Y; Annaraj J; Seo MS; Lee YM; Kim SY; Cho J; Nam W
    J Inorg Biochem; 2008 Dec; 102(12):2155-9. PubMed ID: 18842302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stoichiometric Aldehyde Deformylation Mediated by Nucleophilic Peroxo-diiron(III) Complex as a Functional Model of Aldehyde Deformylating Oxygenase.
    Kripli B; Csendes FV; Török P; Speier G; Kaizer J
    Chemistry; 2019 Nov; 25(63):14290-14294. PubMed ID: 31448834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional models of nonheme diiron enzymes: reactivity of the μ-oxo-μ-1,2-peroxo-diiron(iii) intermediate in electrophilic and nucleophilic reactions.
    Kripli B; Szávuly M; Csendes FV; Kaizer J
    Dalton Trans; 2020 Feb; 49(6):1742-1746. PubMed ID: 31967142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and reactivity of a mononuclear non-haem iron(III)-peroxo complex.
    Cho J; Jeon S; Wilson SA; Liu LV; Kang EA; Braymer JJ; Lim MH; Hedman B; Hodgson KO; Valentine JS; Solomon EI; Nam W
    Nature; 2011 Oct; 478(7370):502-5. PubMed ID: 22031443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactivities of mononuclear non-heme iron intermediates including evidence that iron(III)-hydroperoxo species is a sluggish oxidant.
    Park MJ; Lee J; Suh Y; Kim J; Nam W
    J Am Chem Soc; 2006 Mar; 128(8):2630-4. PubMed ID: 16492048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a heterobimetallic nonheme Fe(III)-O-Cr(III) species formed by O2 activation.
    Zhou A; Kleespies ST; Van Heuvelen KM; Que L
    Chem Commun (Camb); 2015 Oct; 51(76):14326-9. PubMed ID: 26265081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for the formation of a mononuclear ferric-hydroperoxo complex via the reaction of dioxygen with an (N4S(thiolate))iron(II) complex.
    Jiang Y; Telser J; Goldberg DP
    Chem Commun (Camb); 2009 Nov; (44):6828-30. PubMed ID: 19885493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunneling Controls the Reaction Pathway in the Deformylation of Aldehydes by a Nonheme Iron(III)-Hydroperoxo Complex: Hydrogen Atom Abstraction versus Nucleophilic Addition.
    Bae SH; Li XX; Seo MS; Lee YM; Fukuzumi S; Nam W
    J Am Chem Soc; 2019 May; 141(19):7675-7679. PubMed ID: 31034219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mononuclear manganese-peroxo and bis(μ-oxo)dimanganese complexes bearing a common N-methylated macrocyclic ligand.
    Kang H; Cho J; Cho KB; Nomura T; Ogura T; Nam W
    Chemistry; 2013 Oct; 19(42):14119-25. PubMed ID: 24027090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dioxygen-Derived Nonheme Mononuclear Fe
    Yadav V; Gordon JB; Siegler MA; Goldberg DP
    J Am Chem Soc; 2019 Jul; 141(26):10148-10153. PubMed ID: 31244183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygenative aromatic ring cleavage of 2-aminophenol with dioxygen catalyzed by a nonheme iron complex: catalytic functional model of 2-aminophenol dioxygenases.
    Chatterjee S; Paine TK
    Inorg Chem; 2015 Feb; 54(4):1720-7. PubMed ID: 25646806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An iron(III) tetradentate monoamido complex as a nonheme iron-based peroxidase mimetic.
    Hitomi Y; Hiramatsu K; Arakawa K; Takeyasu T; Hata M; Kodera M
    Dalton Trans; 2013 Sep; 42(36):12878-82. PubMed ID: 23925672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand binding properties of myoglobin reconstituted with iron porphycene: unusual O2 binding selectivity against CO binding.
    Matsuo T; Dejima H; Hirota S; Murata D; Sato H; Ikegami T; Hori H; Hisaeda Y; Hayashi T
    J Am Chem Soc; 2004 Dec; 126(49):16007-17. PubMed ID: 15584735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the Redox Properties of a Nonheme Iron(III)-Peroxo Complex Binding Redox-Inactive Zinc Ions by Water Molecules.
    Lee YM; Bang S; Yoon H; Bae SH; Hong S; Cho KB; Sarangi R; Fukuzumi S; Nam W
    Chemistry; 2015 Jul; 21(30):10676-80. PubMed ID: 26096281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autocatalytic formation of an iron(IV)-oxo complex via scandium ion-promoted radical chain autoxidation of an iron(II) complex with dioxygen and tetraphenylborate.
    Nishida Y; Lee YM; Nam W; Fukuzumi S
    J Am Chem Soc; 2014 Jun; 136(22):8042-9. PubMed ID: 24809677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine Control of the Redox Reactivity of a Nonheme Iron(III)-Peroxo Complex by Binding Redox-Inactive Metal Ions.
    Bae SH; Lee YM; Fukuzumi S; Nam W
    Angew Chem Int Ed Engl; 2017 Jan; 56(3):801-805. PubMed ID: 27943595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of molecular oxygen in the iron(III)-promoted oxidative dehydrogenation of amines.
    Saucedo-Vázquez JP; Kroneck PM; Sosa-Torres ME
    Dalton Trans; 2015 Mar; 44(12):5510-9. PubMed ID: 25697977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.