These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 16158594)

  • 21. Effects of five rice herbicides on the growth of two threatened aquatic ferns.
    Aida M; Ikeda H; Itoh K; Usui K
    Ecotoxicol Environ Saf; 2006 Mar; 63(3):463-8. PubMed ID: 16406589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of uncertainties in agricultural working schedules and Monte-Carlo evaluation of the model input in basin-scale runoff model analysis of herbicides.
    Matsui Y; Inoue T; Matsushita T; Yamada T; Yamamoto M; Sumigama Y
    Water Sci Technol; 2005; 51(3-4):329-37. PubMed ID: 15850206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The fate of imazapyr in a Swedish railway embankment.
    Börjesson E; Torstensson L; Stenström J
    Pest Manag Sci; 2004 Jun; 60(6):544-9. PubMed ID: 15198326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variation of 4,5,6,7-tetrachlorophthalide in water after aerial application to rice cultivation area.
    Maeda T; Iwashita M; Hori T; Asada T; Oikawa K; Kawata K
    Bull Environ Contam Toxicol; 2008 May; 80(5):399-402. PubMed ID: 18500665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oryzalin fate and transport in runoff water in Mediterranean vineyards.
    Louchart X; Voltz M; Coulouma G; Andrieux P
    Chemosphere; 2004 Nov; 57(8):921-30. PubMed ID: 15488582
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensitivity analysis using a diffuse pollution hydrologic model to assess factors affecting pesticide concentrations in river water.
    Tani K; Matsui Y; Narita K; Ohno K; Matsushita T
    Water Sci Technol; 2010; 62(11):2579-89. PubMed ID: 21099045
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improvement and application of the PCPF-1@SWAT2012 model for predicting pesticide transport: a case study of the Sakura River watershed.
    Tu LH; Boulange J; Iwafune T; Yadav IC; Watanabe H
    Pest Manag Sci; 2018 Nov; 74(11):2520-2529. PubMed ID: 29656603
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diuron in surface runoff and tile drainage from two grass-seed fields.
    Rupp DE; Peachey RE; Warren KL; Selker JS
    J Environ Qual; 2006; 35(1):303-11. PubMed ID: 16397106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pesticide residues in coastal waters affected by rice paddy effluents temporarily stored in a wastewater reservoir in southern Japan.
    Añasco NC; Koyama J; Uno S
    Arch Environ Contam Toxicol; 2010 Feb; 58(2):352-60. PubMed ID: 19609592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diuron, Irgarol 1051 and Fenitrothion contamination for a river passing through an agricultural and urban area in Higashi Hiroshima City, Japan.
    Kaonga CC; Takeda K; Sakugawa H
    Sci Total Environ; 2015 Jun; 518-519():450-8. PubMed ID: 25777951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monitoring terbutryn pollution in small rivers of Hesse, Germany.
    Quednow K; Püttmann W
    J Environ Monit; 2007 Dec; 9(12):1337-43. PubMed ID: 18049772
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of glyphosate-tolerant soybean and glufosinate-tolerant corn production on herbicide losses in surface runoff.
    Shipitalo MJ; Malone RW; Owens LB
    J Environ Qual; 2008; 37(2):401-8. PubMed ID: 18268303
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acidic herbicides in surface waters of Lower Fraser Valley, British Columbia, Canada.
    Woudneh MB; Sekela M; Tuominen T; Gledhill M
    J Chromatogr A; 2007 Jan; 1139(1):121-9. PubMed ID: 17118381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Decrease of herbicide bromobutide and its debromo metabolite in paddy field soil during 24 weeks after application.
    Morohashi M; Nagasawa S; Enya N; Ohno M; Suzuki K; Kose T; Kawata K
    Bull Environ Contam Toxicol; 2012 Jul; 89(1):176-80. PubMed ID: 22476350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulating concentration of bensulphuron-methyl in a drainage canal of a paddy block using a rice pesticide model.
    Phong TK; Hiramatsu K; Watanabe H
    Environ Technol; 2011 Jan; 32(1-2):69-81. PubMed ID: 21473270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissolved organic matter from agricultural fields in the irrigation period.
    Shim S; Kim B; Hosoi Y; Masuda T
    Water Sci Technol; 2005; 52(12):233-41. PubMed ID: 16477991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption equilibriums of principal herbicides on paddy soils in Japan.
    Kibe K; Takahashi M; Kameya T; Urano K
    Sci Total Environ; 2000 Dec; 263(1-3):115-25. PubMed ID: 11194146
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Herbicide concentrations in the Mississippi River Basin-the importance of chloroacetanilide herbicide degradates.
    Rebich RA; Coupe RH; Thurman EM
    Sci Total Environ; 2004 Apr; 321(1-3):189-99. PubMed ID: 15050395
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pesticide uses and transfers in urbanised catchments.
    Blanchoud H; Farrugia F; Mouchel JM
    Chemosphere; 2004 May; 55(6):905-13. PubMed ID: 15041295
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Field dissipation and environmental hazard assessment of clomazone, molinate, and thiobencarb in Australian rice culture.
    Quayle WC; Oliver DP; Zrna S
    J Agric Food Chem; 2006 Sep; 54(19):7213-20. PubMed ID: 16968085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.