These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
376 related articles for article (PubMed ID: 16158595)
1. Effect of combined pollution by heavy metals on soil enzymatic activities in areas polluted by tailings from Pb-Zn-Ag mine. Chen CL; Liao M; Huang CY J Environ Sci (China); 2005; 17(4):637-40. PubMed ID: 16158595 [TBL] [Abstract][Full Text] [Related]
2. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. Rodríguez L; Ruiz E; Alonso-Azcárate J; Rincón J J Environ Manage; 2009 Feb; 90(2):1106-16. PubMed ID: 18572301 [TBL] [Abstract][Full Text] [Related]
3. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine. Li J; Xie ZM; Zhu YG; Naidu R J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871 [TBL] [Abstract][Full Text] [Related]
4. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Chehregani A; Noori M; Yazdi HL Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362 [TBL] [Abstract][Full Text] [Related]
5. Distribution of copper, lead, cadmium and zinc concentrations in soils around Kabwe town in Zambia. Tembo BD; Sichilongo K; Cernak J Chemosphere; 2006 Apr; 63(3):497-501. PubMed ID: 16337989 [TBL] [Abstract][Full Text] [Related]
6. Selectivity sequences and sorption capacities of phosphatic clay and humus rich soil towards the heavy metals present in zinc mine tailing. Chaturvedi PK; Seth CS; Misra V J Hazard Mater; 2007 Aug; 147(3):698-705. PubMed ID: 17303325 [TBL] [Abstract][Full Text] [Related]
7. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China. Sun Z; Xie X; Wang P; Hu Y; Cheng H Sci Total Environ; 2018 Oct; 639():217-227. PubMed ID: 29787905 [TBL] [Abstract][Full Text] [Related]
8. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Micó C; Recatalá L; Peris M; Sánchez J Chemosphere; 2006 Oct; 65(5):863-72. PubMed ID: 16635506 [TBL] [Abstract][Full Text] [Related]
9. Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Unión mining district (SE Spain). Conesa HM; Faz A; Arnaldos R Sci Total Environ; 2006 Jul; 366(1):1-11. PubMed ID: 16499952 [TBL] [Abstract][Full Text] [Related]
10. Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. Rashed MN J Hazard Mater; 2010 Jun; 178(1-3):739-46. PubMed ID: 20188467 [TBL] [Abstract][Full Text] [Related]
11. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Bhuiyan MA; Parvez L; Islam MA; Dampare SB; Suzuki S J Hazard Mater; 2010 Jan; 173(1-3):384-92. PubMed ID: 19744789 [TBL] [Abstract][Full Text] [Related]
12. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Zhuang P; McBride MB; Xia H; Li N; Li Z Sci Total Environ; 2009 Feb; 407(5):1551-61. PubMed ID: 19068266 [TBL] [Abstract][Full Text] [Related]
13. Heavy metal contamination from mining sites in South Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils. Boularbah A; Schwartz C; Bitton G; Morel JL Chemosphere; 2006 May; 63(5):802-10. PubMed ID: 16213554 [TBL] [Abstract][Full Text] [Related]
14. Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid. Wang S; Mulligan CN Chemosphere; 2009 Jan; 74(2):274-9. PubMed ID: 18977015 [TBL] [Abstract][Full Text] [Related]
15. Spatial distribution and environmental implications of heavy metals in typical lead (Pb)-zinc (Zn) mine tailings impoundments in Guangdong Province, South China. Chen T; Lei C; Yan B; Li LL; Xu DM; Ying GG Environ Sci Pollut Res Int; 2018 Dec; 25(36):36702-36711. PubMed ID: 30377971 [TBL] [Abstract][Full Text] [Related]
16. Effect of some heavy metals and soil humic substances on the phytochelatin production in wild plants from silver mine areas of Guanajuato, Mexico. Figueroa JA; Wrobel K; Afton S; Caruso JA; Corona Felix Gutierrez J; Wrobel K Chemosphere; 2008 Feb; 70(11):2084-91. PubMed ID: 17931685 [TBL] [Abstract][Full Text] [Related]
17. Sequential extraction of heavy metals in river sediments of an abandoned pyrite mining area: pollution detection and affinity series. Pagnanelli F; Moscardini E; Giuliano V; Toro L Environ Pollut; 2004 Nov; 132(2):189-201. PubMed ID: 15312934 [TBL] [Abstract][Full Text] [Related]
18. [Enzyme activities in soils contaminated by abandoned copper tailings]. Teng Y; Huang C; Long J; Yao H; Liu F Ying Yong Sheng Tai Xue Bao; 2003 Nov; 14(11):1976-80. PubMed ID: 14997660 [TBL] [Abstract][Full Text] [Related]
19. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162 [TBL] [Abstract][Full Text] [Related]
20. Effects of earthworms on metal uptake of heavy metals from polluted mine soils by different crop plants. Ruiz E; Rodríguez L; Alonso-Azcárate J Chemosphere; 2009 May; 75(8):1035-41. PubMed ID: 19232427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]