These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 16158645)

  • 1. Multiresolution spectrotemporal analysis of complex sounds.
    Chi T; Ru P; Shamma SA
    J Acoust Soc Am; 2005 Aug; 118(2):887-906. PubMed ID: 16158645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase synchronization in the cochlea at transition from mechanical waves to electrical spikes.
    Bader R
    Chaos; 2015 Oct; 25(10):103124. PubMed ID: 26520090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The case of the missing pitch templates: how harmonic templates emerge in the early auditory system.
    Shamma S; Klein D
    J Acoust Soc Am; 2000 May; 107(5 Pt 1):2631-44. PubMed ID: 10830385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Illusory spectrotemporal ripples created with binaurally correlated noise.
    Nassiri R; Escabí MA
    J Acoust Soc Am; 2008 Apr; 123(4):EL92-8. PubMed ID: 18396927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral and temporal resolutions of information-bearing acoustic changes for understanding vocoded sentences.
    Stilp CE; Goupell MJ
    J Acoust Soc Am; 2015 Feb; 137(2):844-55. PubMed ID: 25698018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of tonotopicity, adaptation, modulation tuning, and temporal coherence in "primitive" auditory stream segregation.
    Christiansen SK; Jepsen ML; Dau T
    J Acoust Soc Am; 2014 Jan; 135(1):323-33. PubMed ID: 24437772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of auditory analysis of pitch: an elaboration on the DWS pitch meter.
    Scheffers MT
    J Acoust Soc Am; 1983 Dec; 74(6):1716-25. PubMed ID: 6655129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical processing of pitch: Model-based encoding and decoding of auditory fMRI responses to real-life sounds.
    De Angelis V; De Martino F; Moerel M; Santoro R; Hausfeld L; Formisano E
    Neuroimage; 2018 Oct; 180(Pt A):291-300. PubMed ID: 29146377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase discrimination ability in Mongolian gerbils provides evidence for possible processing mechanism of mistuning detection.
    Klinge-Strahl A; Parnitzke T; Beutelmann R; Klump GM
    Adv Exp Med Biol; 2013; 787():399-407. PubMed ID: 23716246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the pitch structure associated with multiple rates and places for cochlear implant users.
    Stohl JS; Throckmorton CS; Collins LM
    J Acoust Soc Am; 2008 Feb; 123(2):1043-53. PubMed ID: 18247906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate estimation of compression in simultaneous masking enables the simulation of hearing impairment for normal-hearing listeners.
    Irino T; Fukawatase T; Sakaguchi M; Nisimura R; Kawahara H; Patterson RD
    Adv Exp Med Biol; 2013; 787():73-80. PubMed ID: 23716211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simulation framework for auditory discrimination experiments: Revealing the importance of across-frequency processing in speech perception.
    Schädler MR; Warzybok A; Ewert SD; Kollmeier B
    J Acoust Soc Am; 2016 May; 139(5):2708. PubMed ID: 27250164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing auditory processing and perception in individual listeners with sensorineural hearing loss.
    Jepsen ML; Dau T
    J Acoust Soc Am; 2011 Jan; 129(1):262-81. PubMed ID: 21303008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling within- and across-channel processes in comodulation masking release.
    Dau T; Piechowiak T; Ewert SD
    J Acoust Soc Am; 2013 Jan; 133(1):350-64. PubMed ID: 23297908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating signal-to-noise ratios, loudness, and related measures as indicators of airborne sound insulation.
    Park HK; Bradley JS
    J Acoust Soc Am; 2009 Sep; 126(3):1219-30. PubMed ID: 19739735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromagnetic responses reflect the temporal pitch change of regular interval sounds.
    Ritter S; Günter Dosch H; Specht HJ; Rupp A
    Neuroimage; 2005 Sep; 27(3):533-43. PubMed ID: 15964207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational model of the auditory periphery for speech and hearing research. I. Ascending path.
    Giguère C; Woodland PC
    J Acoust Soc Am; 1994 Jan; 95(1):331-42. PubMed ID: 8120244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ARTSTREAM: a neural network model of auditory scene analysis and source segregation.
    Grossberg S; Govindarajan KK; Wyse LL; Cohen MA
    Neural Netw; 2004 May; 17(4):511-36. PubMed ID: 15109681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of masker type on early reflection processing and speech intelligibility (L).
    Arweiler I; Buchholz JM; Dau T
    J Acoust Soc Am; 2013 Jan; 133(1):13-6. PubMed ID: 23297878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting speech intelligibility based on the signal-to-noise envelope power ratio after modulation-frequency selective processing.
    Jørgensen S; Dau T
    J Acoust Soc Am; 2011 Sep; 130(3):1475-87. PubMed ID: 21895088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.