These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 16158645)

  • 21. Modeling auditory evoked brainstem responses to transient stimuli.
    Rønne FM; Dau T; Harte J; Elberling C
    J Acoust Soc Am; 2012 May; 131(5):3903-13. PubMed ID: 22559366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pitch shifts for complex tones with unresolved harmonics and the implications for models of pitch perception.
    Watkinson RK; Plack CJ; Fantini DA
    J Acoust Soc Am; 2005 Aug; 118(2):934-45. PubMed ID: 16158649
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical and experimental analysis of a central optimal processor for pitch of multicomponent inharmonic tones.
    Grandori F
    Hear Res; 1984 Aug; 15(2):151-8. PubMed ID: 6490541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Auditory filter nonlinearity across frequency using simultaneous notched-noise masking.
    Baker RJ; Rosen S
    J Acoust Soc Am; 2006 Jan; 119(1):454-62. PubMed ID: 16454300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acoustic emissions from the ear: a summary of results from humans and animals.
    Zurek PM
    J Acoust Soc Am; 1985 Jul; 78(1 Pt 2):340-4. PubMed ID: 4031240
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Central factors in the discrimination and identification of complex sounds.
    Watson CS; Foyle DC
    J Acoust Soc Am; 1985 Jul; 78(1 Pt 2):375-80. PubMed ID: 4031244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synchrony capture filterbank: auditory-inspired signal processing for tracking individual frequency components in speech.
    Kumaresan R; Peddinti VK; Cariani P
    J Acoust Soc Am; 2013 Jun; 133(6):4290-310. PubMed ID: 23742379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting contrast effects following reliable spectral properties in speech perception.
    Stilp CE; Anderson PW; Winn MB
    J Acoust Soc Am; 2015 Jun; 137(6):3466-76. PubMed ID: 26093434
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cochlear tuning and the peripheral representation of harmonic sounds in mammals.
    Shofner WP
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Jan; 209(1):145-161. PubMed ID: 35867137
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Revision and validation of a binaural model for speech intelligibility in noise.
    Jelfs S; Culling JF; Lavandier M
    Hear Res; 2011 May; 275(1-2):96-104. PubMed ID: 21156201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A model of perceptual segregation based on clustering the time series of the simulated auditory nerve firing probability.
    Balaguer-Ballester E; Coath M; Denham SL
    Biol Cybern; 2007 Dec; 97(5-6):479-91. PubMed ID: 17994247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep neural network models reveal interplay of peripheral coding and stimulus statistics in pitch perception.
    Saddler MR; Gonzalez R; McDermott JH
    Nat Commun; 2021 Dec; 12(1):7278. PubMed ID: 34907158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Representation of the temporal envelope of sounds in the human brain.
    Giraud AL; Lorenzi C; Ashburner J; Wable J; Johnsrude I; Frackowiak R; Kleinschmidt A
    J Neurophysiol; 2000 Sep; 84(3):1588-98. PubMed ID: 10980029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of signal duration on the underwater detection thresholds of a harbor porpoise (Phocoena phocoena) for single frequency-modulated tonal signals between 0.25 and 160 kHz.
    Kastelein RA; Hoek L; de Jong CA; Wensveen PJ
    J Acoust Soc Am; 2010 Nov; 128(5):3211-22. PubMed ID: 21110616
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modelling speech intelligibility in adverse conditions.
    Jørgensen S; Dau T
    Adv Exp Med Biol; 2013; 787():343-51. PubMed ID: 23716240
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pitch, periodicity, and auditory organization.
    Hartmann WM
    J Acoust Soc Am; 1996 Dec; 100(6):3491-502. PubMed ID: 8969472
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics.
    Epp B; Verhey JL; Mauermann M
    J Acoust Soc Am; 2010 Oct; 128(4):1870-83. PubMed ID: 20968359
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Envelope and intensity based prediction of psychoacoustic masking and speech intelligibility.
    Biberger T; Ewert SD
    J Acoust Soc Am; 2016 Aug; 140(2):1023. PubMed ID: 27586734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A central spectrum model: a synthesis of auditory-nerve timing and place cues in monaural communication of frequency spectrum.
    Srulovicz P; Goldstein JL
    J Acoust Soc Am; 1983 Apr; 73(4):1266-76. PubMed ID: 6853838
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of tones in noise and the "severe departure" from Weber's law.
    Carlyon RP; Moore BC
    J Acoust Soc Am; 1986 Feb; 79(2):461-4. PubMed ID: 3950199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.