These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 16158665)

  • 1. Spectral peak resolution and speech recognition in quiet: normal hearing, hearing impaired, and cochlear implant listeners.
    Henry BA; Turner CW; Behrens A
    J Acoust Soc Am; 2005 Aug; 118(2):1111-21. PubMed ID: 16158665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The resolution of complex spectral patterns by cochlear implant and normal-hearing listeners.
    Henry BA; Turner CW
    J Acoust Soc Am; 2003 May; 113(5):2861-73. PubMed ID: 12765402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants.
    Friesen LM; Shannon RV; Baskent D; Wang X
    J Acoust Soc Am; 2001 Aug; 110(2):1150-63. PubMed ID: 11519582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speech recognition in normal hearing and sensorineural hearing loss as a function of the number of spectral channels.
    Başkent D
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2908-25. PubMed ID: 17139748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearing.
    Davies-Venn E; Nelson P; Souza P
    J Acoust Soc Am; 2015 Jul; 138(1):492-503. PubMed ID: 26233047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noise susceptibility of cochlear implant users: the role of spectral resolution and smearing.
    Fu QJ; Nogaki G
    J Assoc Res Otolaryngol; 2005 Mar; 6(1):19-27. PubMed ID: 15735937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the Quality of Low-Frequency Acoustic Hearing: Implications for Combined Electroacoustic Stimulation With Cochlear Implants.
    Spitzer ER; Landsberger DM; Friedmann DR
    Ear Hear; 2021; 42(2):475-486. PubMed ID: 32976249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of high frequencies to speech recognition in quiet and noise in listeners with varying degrees of high-frequency sensorineural hearing loss.
    Amos NE; Humes LE
    J Speech Lang Hear Res; 2007 Aug; 50(4):819-34. PubMed ID: 17675588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of consonant recognition in quiet for listeners with normal and impaired hearing using an auditory model.
    Jürgens T; Ewert SD; Kollmeier B; Brand T
    J Acoust Soc Am; 2014 Mar; 135(3):1506-17. PubMed ID: 24606286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pitch strength and pitch dominance of iterated rippled noises in hearing-impaired listeners.
    Leek MR; Summers V
    J Acoust Soc Am; 2001 Jun; 109(6):2944-54. PubMed ID: 11425136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of spectral and temporal cues in voice gender discrimination by normal-hearing listeners and cochlear implant users.
    Fu QJ; Chinchilla S; Galvin JJ
    J Assoc Res Otolaryngol; 2004 Sep; 5(3):253-60. PubMed ID: 15492884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of age and hearing mechanism on spectral resolution in normal hearing and cochlear-implanted listeners.
    Horn DL; Dudley DJ; Dedhia K; Nie K; Drennan WR; Won JH; Rubinstein JT; Werner LA
    J Acoust Soc Am; 2017 Jan; 141(1):613. PubMed ID: 28147578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of noise and spectral resolution on vowel and consonant recognition: acoustic and electric hearing.
    Fu QJ; Shannon RV; Wang X
    J Acoust Soc Am; 1998 Dec; 104(6):3586-96. PubMed ID: 9857517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Word recognition for temporally and spectrally distorted materials: the effects of age and hearing loss.
    Smith SL; Pichora-Fuller MK; Wilson RH; Macdonald EN
    Ear Hear; 2012; 33(3):349-66. PubMed ID: 22343546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A psychophysical evaluation of spectral enhancement.
    DiGiovanni JJ; Nelson PB; Schlauch RS
    J Speech Lang Hear Res; 2005 Oct; 48(5):1121-35. PubMed ID: 16411801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limiting spectral resolution in speech for listeners with sensorineural hearing loss.
    Turner CW; Chi SL; Flock S
    J Speech Lang Hear Res; 1999 Aug; 42(4):773-84. PubMed ID: 10450899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of vowel context on the recognition of initial and medial consonants by cochlear implant users.
    Donaldson GS; Kreft HA
    Ear Hear; 2006 Dec; 27(6):658-77. PubMed ID: 17086077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognition of time-distorted sentences by normal-hearing and cochlear-implant listeners.
    Fu QJ; Galvin JJ; Wang X
    J Acoust Soc Am; 2001 Jan; 109(1):379-84. PubMed ID: 11206166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speech recognition by normal-hearing and cochlear implant listeners as a function of intensity resolution.
    Loizou PC; Dorman M; Poroy O; Spahr T
    J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2377-87. PubMed ID: 11108378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectrotemporal Modulation Detection and Speech Perception by Cochlear Implant Users.
    Won JH; Moon IJ; Jin S; Park H; Woo J; Cho YS; Chung WH; Hong SH
    PLoS One; 2015; 10(10):e0140920. PubMed ID: 26485715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.