These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 16158685)

  • 1. Effects of task constraints on reaching kinematics by healthy adults.
    Wu CY; Lin KC; Lin KH; Chang CW; Chen CL
    Percept Mot Skills; 2005 Jun; 100(3 Pt 2):983-94. PubMed ID: 16158685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The development of rapid online control in children aged 6-12 years: reaching performance.
    Wilson PH; Hyde C
    Hum Mov Sci; 2013 Oct; 32(5):1138-50. PubMed ID: 23932022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial accuracy demand in aiming movements: kinematic analysis of subtended angle and tolerance width.
    Yao WX; DeSola B; Zunker W; Zhong CB; Wallace SA; Ding Y
    Percept Mot Skills; 2007 Apr; 104(2):611-20. PubMed ID: 17566451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does the central nervous system learn to plan bimanual movements based on its expectation of availability of visual feedback?
    Srinivasan D; Martin BJ
    Hum Mov Sci; 2012 Dec; 31(6):1409-24. PubMed ID: 22742721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manual asymmetries in the directional coding of reaching: further evidence for hemispatial effects and right hemisphere dominance for movement planning.
    Barthélémy S; Boulinguez P
    Exp Brain Res; 2002 Dec; 147(3):305-12. PubMed ID: 12428138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feedforward and feedback processes in motor control.
    Seidler RD; Noll DC; Thiers G
    Neuroimage; 2004 Aug; 22(4):1775-83. PubMed ID: 15275933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of movement speed on limb segment motions for reaching from a standing position.
    Thomas JS; Corcos DM; Hasan Z
    Exp Brain Res; 2003 Feb; 148(3):377-87. PubMed ID: 12541148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intercepting a moving target: effects of temporal precision constraints and movement amplitude.
    Tresilian JR; Lonergan A
    Exp Brain Res; 2002 Jan; 142(2):193-207. PubMed ID: 11807574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aiming in adults: sex and laterality effects.
    Barral J; Debû B
    Laterality; 2004 Jul; 9(3):299-312. PubMed ID: 15341428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinematic analysis of multiple constraints on a pointing task.
    Thompson SG; McConnell DS; Slocum JS; Bohan M
    Hum Mov Sci; 2007 Feb; 26(1):11-26. PubMed ID: 17126941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic control of joint angle variability: influence of target shape.
    Krüger M; Borbély B; Eggert T; Straube A
    Hum Mov Sci; 2012 Oct; 31(5):1071-89. PubMed ID: 22244105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The movement speed-accuracy relation in space-time.
    Hsieh TY; Liu YT; Mayer-Kress G; Newell KM
    Hum Mov Sci; 2013 Feb; 32(1):257-69. PubMed ID: 23465725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing stability of support structure for a target does not alter reach kinematics among younger adults.
    Cooper SA; Doan JB; Pellis SM; Whishaw IQ; Brown LA
    Percept Mot Skills; 2005 Jun; 100(3 Pt 1):831-8. PubMed ID: 16060451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental differences in drawing performance of the dominant and non-dominant hand in right-handed boys and girls.
    van Mier H
    Hum Mov Sci; 2006 Oct; 25(4-5):657-77. PubMed ID: 17011658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of spatial-memory decay and dual-task interference on perturbation-evoked reach-to-grasp reactions in the absence of online visual feedback.
    Cheng KC; Pratt J; Maki BE
    Hum Mov Sci; 2013 Apr; 32(2):328-42. PubMed ID: 23635599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Target location and visual feedback as variables determining accuracy of aiming movements.
    Sullivan MP; Christina RW
    Percept Mot Skills; 1983 Apr; 56(2):355-8. PubMed ID: 6866646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feedback and feedforward adaptation to visuomotor delay during reaching and slicing movements.
    Botzer L; Karniel A
    Eur J Neurosci; 2013 Jul; 38(1):2108-23. PubMed ID: 23701418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutual information in the evolution of trajectories in discrete aiming movements.
    Lai SC; Mayer-Kress G; Newell KM
    Nonlinear Dynamics Psychol Life Sci; 2008 Jul; 12(3):241-59. PubMed ID: 18510836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basal ganglia and frontal involvement in self-generated and externally-triggered finger movements in the dominant and non-dominant hand.
    François-Brosseau FE; Martinu K; Strafella AP; Petrides M; Simard F; Monchi O
    Eur J Neurosci; 2009 Mar; 29(6):1277-86. PubMed ID: 19302163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visuomotor transformations for reaching to memorized targets: a PET study.
    Lacquaniti F; Perani D; Guigon E; Bettinardi V; Carrozzo M; Grassi F; Rossetti Y; Fazio F
    Neuroimage; 1997 Feb; 5(2):129-46. PubMed ID: 9345543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.