These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 16159140)
1. Determination of homopolypeptide conformational changes by the modeling of electrophoretic mobilities. Plasson R; Cottet H Anal Chem; 2005 Sep; 77(18):6047-54. PubMed ID: 16159140 [TBL] [Abstract][Full Text] [Related]
2. Determination of synthetic polypeptide conformations and molecular geometrical parameters by nonaqueous CE. Plasson R; Vayaboury W; Giani O; Cottet H Electrophoresis; 2007 Oct; 28(20):3617-24. PubMed ID: 17941129 [TBL] [Abstract][Full Text] [Related]
3. Determination and modeling of peptide pKa by capillary zone electrophoresis. Plasson R; Cottet H Anal Chem; 2006 Aug; 78(15):5394-402. PubMed ID: 16878874 [TBL] [Abstract][Full Text] [Related]
4. From small charged molecules to oligomers: a semiempirical approach to the modeling of actual mobility in free solution. Cottet H; Gareil P Electrophoresis; 2000 May; 21(8):1493-504. PubMed ID: 10832879 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the slip length in the slipping friction between background electrolytes and peptides through the modeling of their capillary zone electrophoretic mobilities. Deiber JA; Piaggio MV; Peirotti MB Electrophoresis; 2013 Sep; 34(18):2648-54. PubMed ID: 23712447 [TBL] [Abstract][Full Text] [Related]
6. Global chain properties of an all l-α-eicosapeptide with a secondary α-helix and its all retro d-inverso-α-eicosapeptide estimated through the modeling of their CZE-determined electrophoretic mobilities. Deiber JA; Piaggio MV; Peirotti MB Electrophoresis; 2014 Mar; 35(5):755-61. PubMed ID: 24293200 [TBL] [Abstract][Full Text] [Related]
7. Nitromethane as solvent in capillary electrophoresis. Subirats X; Porras SP; Rosés M; Kenndler E J Chromatogr A; 2005 Jun; 1079(1-2):246-53. PubMed ID: 16038311 [TBL] [Abstract][Full Text] [Related]
8. Reliable electrophoretic mobilities free from Joule heating effects using CE. Evenhuis CJ; Hruska V; Guijt RM; Macka M; Gas B; Marriott PJ; Haddad PR Electrophoresis; 2007 Oct; 28(20):3759-66. PubMed ID: 17941134 [TBL] [Abstract][Full Text] [Related]
9. Analysis of the interplay among charge, hydration and shape of proteins through the modeling of their CZE mobility data. Piaggio MV; Peirotti MB; Deiber JA Electrophoresis; 2009 Jul; 30(13):2328-36. PubMed ID: 19569126 [TBL] [Abstract][Full Text] [Related]
10. Exploring the evaluation of net charge, hydrodynamic size and shape of peptides through experimental electrophoretic mobilities obtained from CZE. Piaggio MV; Peirotti MB; Deiber JA Electrophoresis; 2006 Dec; 27(23):4631-47. PubMed ID: 17136715 [TBL] [Abstract][Full Text] [Related]
11. Determination of peptide dissociation constants and Stokes radius at different protonation stages by capillary electrophoresis. Castagnola M; Rossetti DV; Cassiano L; Misiti F; Pennacchietti L; Giardina B; Messana I Electrophoresis; 1996 Dec; 17(12):1925-30. PubMed ID: 9034777 [TBL] [Abstract][Full Text] [Related]
12. Physicochemical characterization of phosphinic pseudopeptides by capillary zone electrophoresis in highly acidic background electrolytes. Koval D; Kasicka V; Jirácek J; Collinsová M Electrophoresis; 2003 Mar; 24(5):774-81. PubMed ID: 12627437 [TBL] [Abstract][Full Text] [Related]
13. Determination of effective charges and ionic mobilities of polycationic antimicrobial peptides by capillary isotachophoresis and capillary zone electrophoresis. Tůmová T; Monincová L; Nešuta O; Čeřovský V; Kašička V Electrophoresis; 2017 Aug; 38(16):2018-2024. PubMed ID: 28493394 [TBL] [Abstract][Full Text] [Related]
14. Estimation of acidity constants, ionic mobilities and charges of antimicrobial peptides by capillary electrophoresis. Tůmová T; Monincová L; Čeřovský V; Kašička V Electrophoresis; 2016 Dec; 37(23-24):3186-3195. PubMed ID: 27757974 [TBL] [Abstract][Full Text] [Related]
15. The free solution electrophoretic mobility of peptides by a bead modeling methodology. Pei H; Allison S J Chromatogr A; 2009 Mar; 1216(10):1908-16. PubMed ID: 18823631 [TBL] [Abstract][Full Text] [Related]
16. Investigation of the effect of ionic strength of Tris-acetate background electrolyte on electrophoretic mobilities of mono-, di-, and trivalent organic anions by capillary electrophoresis. Koval D; Kasicka V; Zusková I Electrophoresis; 2005 Sep; 26(17):3221-31. PubMed ID: 16097028 [TBL] [Abstract][Full Text] [Related]
17. Estimation of global structural and transport properties of peptides through the modeling of their CZE mobility data. Piaggio MV; Peirotti MB; Deiber JA J Sep Sci; 2010 Aug; 33(16):2423-9. PubMed ID: 20506428 [TBL] [Abstract][Full Text] [Related]
18. Determination of thermodynamic acidity constants and limiting ionic mobilities of weak electrolytes by capillary electrophoresis using a new free software AnglerFish. Malý M; Boublík M; Pocrnić M; Ansorge M; Lorinčíková K; Svobodová J; Hruška V; Dubský P; Gaš B Electrophoresis; 2020 Apr; 41(7-8):493-501. PubMed ID: 31651992 [TBL] [Abstract][Full Text] [Related]
19. On the use of the activation energy concept to investigate analyte and network deformations in entangled polymer solution capillary electrophoresis of synthetic polyelectrolytes. Cottet H; Gareil P Electrophoresis; 2001; 22(4):684-91. PubMed ID: 11296923 [TBL] [Abstract][Full Text] [Related]
20. Electrophoretic behavior of peptides in capillary electrophoresis influence of ionic strength and pH in aqueous-organic media. Sanz-Nebot V; Benavente F; Toro I; Barbosa J J Chromatogr A; 2001 Jun; 921(1):69-79. PubMed ID: 11461015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]