These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 16159246)
1. Efficient, accurate calculation of rotational diffusion and NMR relaxation of globular proteins from atomic-level structures and approximate hydrodynamic calculations. Ortega A; García de la Torre J J Am Chem Soc; 2005 Sep; 127(37):12764-5. PubMed ID: 16159246 [TBL] [Abstract][Full Text] [Related]
2. HYDRONMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations. García de la Torre J; Huertas ML; Carrasco B J Magn Reson; 2000 Nov; 147(1):138-46. PubMed ID: 11042057 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the overall rotational diffusion of a protein from 15N relaxation measurements and hydrodynamic calculations. Blake-Hall J; Walker O; Fushman D Methods Mol Biol; 2004; 278():139-60. PubMed ID: 15317996 [TBL] [Abstract][Full Text] [Related]
4. Determination of the rotational diffusion tensor of macromolecules in solution from nmr relaxation data with a combination of exact and approximate methods--application to the determination of interdomain orientation in multidomain proteins. Ghose R; Fushman D; Cowburn D J Magn Reson; 2001 Apr; 149(2):204-17. PubMed ID: 11318619 [TBL] [Abstract][Full Text] [Related]
5. Hydrodynamic models and computational methods for NMR relaxation. García de la Torre J; Bernadó P; Pons M Methods Enzymol; 2005; 394():419-30. PubMed ID: 15808231 [TBL] [Abstract][Full Text] [Related]
6. An efficient computational method for predicting rotational diffusion tensors of globular proteins using an ellipsoid representation. Ryabov YE; Geraghty C; Varshney A; Fushman D J Am Chem Soc; 2006 Dec; 128(48):15432-44. PubMed ID: 17132010 [TBL] [Abstract][Full Text] [Related]
7. Smoluchowski dynamics of the vnd/NK-2 homeodomain from Drosophila melanogaster: second-order maximum correlation approximation. La Penna G; Fausti S; Perico A; Ferretti JA Biopolymers; 2000 Aug; 54(2):89-103. PubMed ID: 10861370 [TBL] [Abstract][Full Text] [Related]
8. Protein effective rotational correlation times from translational self-diffusion coefficients measured by PFG-NMR. Yao S; Babon JJ; Norton RS Biophys Chem; 2008 Aug; 136(2-3):145-51. PubMed ID: 18583018 [TBL] [Abstract][Full Text] [Related]
9. Macromolecular crowding in biological systems: hydrodynamics and NMR methods. Bernadó P; García de la Torre J; Pons M J Mol Recognit; 2004; 17(5):397-407. PubMed ID: 15362098 [TBL] [Abstract][Full Text] [Related]
10. Efficient approximate all-atom solvent accessible surface area method parameterized for folded and denatured protein conformations. Guvench O; Brooks CL J Comput Chem; 2004 Jun; 25(8):1005-14. PubMed ID: 15067676 [TBL] [Abstract][Full Text] [Related]
11. Fast and accurate predictions of protein NMR chemical shifts from interatomic distances. Kohlhoff KJ; Robustelli P; Cavalli A; Salvatella X; Vendruscolo M J Am Chem Soc; 2009 Oct; 131(39):13894-5. PubMed ID: 19739624 [TBL] [Abstract][Full Text] [Related]
12. Effective rotational correlation times of proteins from NMR relaxation interference. Lee D; Hilty C; Wider G; Wüthrich K J Magn Reson; 2006 Jan; 178(1):72-6. PubMed ID: 16188473 [TBL] [Abstract][Full Text] [Related]
13. Amplitudes and directions of internal protein motions from a JAM analysis of 15N relaxation data. Kitao A; Wagner G Magn Reson Chem; 2006 Jul; 44 Spec No():S130-42. PubMed ID: 16823895 [TBL] [Abstract][Full Text] [Related]
14. Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding. Korzhnev DM; Kay LE Acc Chem Res; 2008 Mar; 41(3):442-51. PubMed ID: 18275162 [TBL] [Abstract][Full Text] [Related]
17. Automated structure determination of proteins with the SAIL-FLYA NMR method. Takeda M; Ikeya T; Güntert P; Kainosho M Nat Protoc; 2007; 2(11):2896-902. PubMed ID: 18007625 [TBL] [Abstract][Full Text] [Related]
18. Interpretation of 15N NMR relaxation data of globular proteins using hydrodynamic calculations with HYDRONMR. Bernadó P; García de la Torre J; Pons M J Biomol NMR; 2002 Jun; 23(2):139-50. PubMed ID: 12153039 [TBL] [Abstract][Full Text] [Related]
19. Measurement of 15N-T1 relaxation rates in a perdeuterated protein by magic angle spinning solid-state nuclear magnetic resonance spectroscopy. Chevelkov V; Diehl A; Reif B J Chem Phys; 2008 Feb; 128(5):052316. PubMed ID: 18266433 [TBL] [Abstract][Full Text] [Related]
20. Rotational diffusion of membrane proteins in aligned phospholipid bilayers by solid-state NMR spectroscopy. Park SH; Mrse AA; Nevzorov AA; De Angelis AA; Opella SJ J Magn Reson; 2006 Jan; 178(1):162-5. PubMed ID: 16213759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]