BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 16159284)

  • 1. Electronic structure of compound I in human isoforms of cytochrome P450 from QM/MM modeling.
    Bathelt CM; Zurek J; Mulholland AJ; Harvey JN
    J Am Chem Soc; 2005 Sep; 127(37):12900-8. PubMed ID: 16159284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic QM/MM investigation of factors that affect the cytochrome P450-catalyzed hydrogen abstraction of camphor.
    Altun A; Shaik S; Thiel W
    J Comput Chem; 2006 Sep; 27(12):1324-37. PubMed ID: 16788908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward identification of the compound I reactive intermediate in cytochrome P450 chemistry: a QM/MM study of its EPR and Mössbauer parameters.
    Schöneboom JC; Neese F; Thiel W
    J Am Chem Soc; 2005 Apr; 127(16):5840-53. PubMed ID: 15839682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QM/MM modeling of compound I active species in cytochrome P450, cytochrome C peroxidase, and ascorbate peroxidase.
    Harvey JN; Bathelt CM; Mulholland AJ
    J Comput Chem; 2006 Sep; 27(12):1352-62. PubMed ID: 16788912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QM/MM studies of the electronic structure of the compound I intermediate in cytochrome c peroxidase and ascorbate peroxidase.
    Bathelt CM; Mulholland AJ; Harvey JN
    Dalton Trans; 2005 Nov; (21):3470-6. PubMed ID: 16234927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The rate-limiting step in P450 hydroxylation of hydrocarbons a direct comparison of the "somersault" versus the "consensus" mechanism involving compound I.
    Bach RD
    J Phys Chem A; 2010 Sep; 114(34):9319-32. PubMed ID: 20690650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum mechanical/molecular mechanical investigation of the mechanism of C-H hydroxylation of camphor by cytochrome P450cam: theory supports a two-state rebound mechanism.
    Schöneboom JC; Cohen S; Lin H; Shaik S; Thiel W
    J Am Chem Soc; 2004 Mar; 126(12):4017-34. PubMed ID: 15038756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. P450 enzymes: their structure, reactivity, and selectivity-modeled by QM/MM calculations.
    Shaik S; Cohen S; Wang Y; Chen H; Kumar D; Thiel W
    Chem Rev; 2010 Feb; 110(2):949-1017. PubMed ID: 19813749
    [No Abstract]   [Full Text] [Related]  

  • 9. Compound I in heme thiolate enzymes: a comparative QM/MM study.
    Cho KB; Hirao H; Chen H; Carvajal MA; Cohen S; Derat E; Thiel W; Shaik S
    J Phys Chem A; 2008 Dec; 112(50):13128-38. PubMed ID: 18850694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compound I reactivity defines alkene oxidation selectivity in cytochrome P450cam.
    Lonsdale R; Harvey JN; Mulholland AJ
    J Phys Chem B; 2010 Jan; 114(2):1156-62. PubMed ID: 20014756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What is the active species of cytochrome P450 during camphor hydroxylation? QM/MM studies of different electronic states of compound I and of reduced and oxidized iron-oxo intermediates.
    Altun A; Shaik S; Thiel W
    J Am Chem Soc; 2007 Jul; 129(29):8978-87. PubMed ID: 17595079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect and influence of cis-ligands on the electronic and oxidizing properties of nonheme oxoiron biomimetics. A density functional study.
    de Visser SP; Nam W
    J Phys Chem A; 2008 Dec; 112(50):12887-95. PubMed ID: 18616332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New features in the catalytic cycle of cytochrome P450 during the formation of compound I from compound 0.
    Kumar D; Hirao H; de Visser SP; Zheng J; Wang D; Thiel W; Shaik S
    J Phys Chem B; 2005 Oct; 109(42):19946-51. PubMed ID: 16853579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is the bound substrate in nitric oxide synthase protonated or neutral and what is the active oxidant that performs substrate hydroxylation?
    de Visser SP; Tan LS
    J Am Chem Soc; 2008 Oct; 130(39):12961-74. PubMed ID: 18774806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined quantum mechanical/molecular mechanical study on the pentacoordinated ferric and ferrous cytochrome P450cam complexes.
    Altun A; Thiel W
    J Phys Chem B; 2005 Jan; 109(3):1268-80. PubMed ID: 16851091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gauging the relative oxidative powers of compound I, ferric-hydroperoxide, and the ferric-hydrogen peroxide species of cytochrome P450 toward C-H hydroxylation of a radical clock substrate.
    Derat E; Kumar D; Hirao H; Shaik S
    J Am Chem Soc; 2006 Jan; 128(2):473-84. PubMed ID: 16402834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density functional theory (DFT) and combined quantum mechanical/molecular mechanics (QM/MM) studies on the oxygen activation step in nitric oxide synthase enzymes.
    de Visser SP
    Biochem Soc Trans; 2009 Apr; 37(Pt 2):373-7. PubMed ID: 19290865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytochrome P450: an investigation of the Mössbauer spectra of a reaction intermediate and an Fe(IV)[double bond]O model system.
    Zhang Y; Oldfield E
    J Am Chem Soc; 2004 Apr; 126(14):4470-1. PubMed ID: 15070336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QM/MM modeling of benzene hydroxylation in human cytochrome P450 2C9.
    Bathelt CM; Mulholland AJ; Harvey JN
    J Phys Chem A; 2008 Dec; 112(50):13149-56. PubMed ID: 18754597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structures and electronic configuration of compound I intermediates of Helicobacter pylori and Penicillium vitale catalases determined by X-ray crystallography and QM/MM density functional theory calculations.
    Alfonso-Prieto M; Borovik A; Carpena X; Murshudov G; Melik-Adamyan W; Fita I; Rovira C; Loewen PC
    J Am Chem Soc; 2007 Apr; 129(14):4193-205. PubMed ID: 17358056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.