These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 16159292)

  • 1. Molecular mechanisms of photoinduced oxygen evolution, PL emission, and surface roughening at atomically smooth (110) and (100) n-TiO2 (rutile) surfaces in aqueous acidic solutions.
    Nakamura R; Okamura T; Ohashi N; Imanishi A; Nakato Y
    J Am Chem Soc; 2005 Sep; 127(37):12975-83. PubMed ID: 16159292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary intermediates of oxygen photoevolution reaction on TiO2 (Rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements.
    Nakamura R; Nakato Y
    J Am Chem Soc; 2004 Feb; 126(4):1290-8. PubMed ID: 14746503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of water photooxidation reaction at atomically flat TiO2 (rutile) (110) and (100) surfaces: dependence on solution pH.
    Imanishi A; Okamura T; Ohashi N; Nakamura R; Nakato Y
    J Am Chem Soc; 2007 Sep; 129(37):11569-78. PubMed ID: 17722924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoluminescence of anatase and rutile TiO2 particles.
    Abazović ND; Comor MI; Dramićanin MD; Jovanović DJ; Ahrenkiel SP; Nedeljković JM
    J Phys Chem B; 2006 Dec; 110(50):25366-70. PubMed ID: 17165983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal-face dependences of surface band edges and hole reactivity, revealed by preparation of essentially atomically smooth and stable (110) and (100) n-TiO(2) (rutile) surfaces.
    Nakamura R; Ohashi N; Imanishi A; Osawa T; Matsumoto Y; Koinuma H; Nakato Y
    J Phys Chem B; 2005 Feb; 109(5):1648-51. PubMed ID: 16851137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase structure and luminescence properties of Eu3+-doped TiO2 nanocrystals synthesized by Ar/O2 radio frequency thermal plasma oxidation of liquid precursor mists.
    Li JG; Wang X; Watanabe K; Ishigaki T
    J Phys Chem B; 2006 Jan; 110(3):1121-7. PubMed ID: 16471653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of fibronectin adsorption on TiO2 surfaces.
    Sousa SR; Brás MM; Moradas-Ferreira P; Barbosa MA
    Langmuir; 2007 Jun; 23(13):7046-54. PubMed ID: 17508764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical reactions on rutile TiO2(110).
    Lun Pang C; Lindsay R; Thornton G
    Chem Soc Rev; 2008 Oct; 37(10):2328-53. PubMed ID: 18818830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of nano titania powder with high photoactivity for gas-phase photo-oxidation of benzene from TiOCl(2) aqueous solution at low temperatures.
    Li Y; Lee NH; Hwang DS; Song JS; Lee EG; Kim SJ
    Langmuir; 2004 Dec; 20(25):10838-44. PubMed ID: 15568831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orientation dependence of the isoelectric point of TiO2 (rutile) surfaces.
    Bullard JW; Cima MJ
    Langmuir; 2006 Nov; 22(24):10264-71. PubMed ID: 17107031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen photoevolution on a tantalum oxynitride photocatalyst under visible-light irradiation: how does water photooxidation proceed on a metal-oxynitride surface?
    Nakamura R; Tanaka T; Nakato Y
    J Phys Chem B; 2005 May; 109(18):8920-7. PubMed ID: 16852061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of photoinduced defects in TiO2 and its effects on hydrogen evolution from aqueous methanol solution.
    Yang X; Salzmann C; Shi H; Wang H; Green ML; Xiao T
    J Phys Chem A; 2008 Oct; 112(43):10784-9. PubMed ID: 18834185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic-Scale Surface Local Structure of TiO2 and Its Influence on the Water Photooxidation Process.
    Imanishi A; Fukui K
    J Phys Chem Lett; 2014 Jun; 5(12):2108-17. PubMed ID: 26270500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of urea surface modification and photocatalytic cleaning on surface-assisted laser desorption ionization mass spectrometry with amorphous TiO2 nanoparticles.
    Watanabe T; Okumura K; Kawasaki H; Arakawa R
    J Mass Spectrom; 2009 Oct; 44(10):1443-51. PubMed ID: 19685481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid bilayer membrane with atomic step structure: supported bilayer on a step-and-terrace TiO2(100) surface.
    Tero R; Ujihara T; Urisu T
    Langmuir; 2008 Oct; 24(20):11567-76. PubMed ID: 18785710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vapor-phase formation of alkyl isocyanate-derived self-assembled monolayers on titanium dioxide.
    Hozumi A; Kim B; McCarthy TJ
    Langmuir; 2009 Mar; 25(5):2875-80. PubMed ID: 19437701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NC-AFM observation of atomic scale structure of rutile-type TiO2(110) surface prepared by wet chemical process.
    Namai Y; Matsuoka O
    J Phys Chem B; 2006 Apr; 110(13):6451-3. PubMed ID: 16570940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation.
    Chrétien S; Metiu H
    J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The investigation of photo-induced chemiluminescence on Co2+-doped TiO2 nanoparticles and its analytical application.
    Li G; Nan H; Zheng X
    Analyst; 2009 Jul; 134(7):1396-404. PubMed ID: 19562208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics investigation of oxygen vacancy diffusion in rutile.
    Jug K; Nair NN; Bredow T
    Phys Chem Chem Phys; 2005 Jul; 7(13):2616-21. PubMed ID: 16189572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.