BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 16159298)

  • 41. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells.
    Kuang D; Brillet J; Chen P; Takata M; Uchida S; Miura H; Sumioka K; Zakeeruddin SM; Grätzel M
    ACS Nano; 2008 Jun; 2(6):1113-6. PubMed ID: 19206327
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Retardation of interfacial charge recombination by addition of quaternary ammonium cation and its application to low temperature processed dye-sensitized solar cells.
    Kanzaki T; Nakade S; Wada Y; Yanagida S
    Photochem Photobiol Sci; 2006 Apr; 5(4):389-94. PubMed ID: 16583019
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reducing charge recombination losses in solid state dye sensitized solar cells: the use of donor-acceptor sensitizer dyes.
    Handa S; Wietasch H; Thelakkat M; Durrant JR; Haque SA
    Chem Commun (Camb); 2007 May; (17):1725-7. PubMed ID: 17457421
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Iodine/iodide-free dye-sensitized solar cells.
    Yanagida S; Yu Y; Manseki K
    Acc Chem Res; 2009 Nov; 42(11):1827-38. PubMed ID: 19877690
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preparation, characterization, and electrochemical properties of a new series of hybrid dendrimers containing a viologen core and Frechet and Newkome dendrons.
    Bhattacharya P; Kaifer AE
    J Org Chem; 2008 Aug; 73(15):5693-8. PubMed ID: 18598083
    [TBL] [Abstract][Full Text] [Related]  

  • 46. ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells.
    Law M; Greene LE; Radenovic A; Kuykendall T; Liphardt J; Yang P
    J Phys Chem B; 2006 Nov; 110(45):22652-63. PubMed ID: 17092013
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of benzyl ether type dendrons as hole-harvesting antennas, and shielding for the neutralization of stilbene core radical cations with chloride ion during two-photon ionization of stilbene dendrimers having stilbene core and benzyl ether type dendrons.
    Hara M; Samori S; Cai X; Tojo S; Arai T; Momotake A; Hayakawa J; Uda M; Kawai K; Endo M; Fujitsuka M; Majima T
    J Am Chem Soc; 2004 Nov; 126(43):14217-23. PubMed ID: 15506788
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis of poly(propyl ether imine) dendrimers and evaluation of their cytotoxic properties.
    Krishna TR; Jayaraman N
    J Org Chem; 2003 Dec; 68(25):9694-704. PubMed ID: 14656096
    [TBL] [Abstract][Full Text] [Related]  

  • 49. TiO2 surface modification and characterization with nanosized PbS in dye-sensitized solar cells.
    Wang P; Wang L; Ma B; Li B; Qiu Y
    J Phys Chem B; 2006 Jul; 110(29):14406-9. PubMed ID: 16854149
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhancement of dye-sensitized photocurrents by gold nanoparticles: effects of dye-particle spacing.
    Kawawaki T; Takahashi Y; Tatsuma T
    Nanoscale; 2011 Jul; 3(7):2865-7. PubMed ID: 21681292
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of low crystallinity TiO2 film with nanocrystalline anatase film for dye-sensitized solar cells.
    Tang X; Qian J; Wang Z; Wang H; Feng Q; Liu G
    J Colloid Interface Sci; 2009 Feb; 330(2):386-91. PubMed ID: 19036388
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Acene-modified triphenylamine dyes for dye-sensitized solar cells: a computational study.
    Fan W; Tan D; Deng WQ
    Chemphyschem; 2012 Jun; 13(8):2051-60. PubMed ID: 22447680
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhomogeneity of electron injection rates in dye-sensitized TiO2: comparison of the mesoporous film and single nanoparticle behavior.
    Bell TD; Pagba C; Myahkostupov M; Hofkens J; Piotrowiak P
    J Phys Chem B; 2006 Dec; 110(50):25314-21. PubMed ID: 17165977
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fine-tuning of triarylamine-based photosensitizers for dye-sensitized solar cells.
    Olivier C; Sauvage F; Ducasse L; Castet F; Grätzel M; Toupance T
    ChemSusChem; 2011 Jun; 4(6):731-6. PubMed ID: 21591270
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An interfacial and bulk charge transport model for dye-sensitized solar cells based on photoanodes consisting of core-shell nanowire arrays.
    Hill JJ; Banks N; Haller K; Orazem ME; Ziegler KJ
    J Am Chem Soc; 2011 Nov; 133(46):18663-72. PubMed ID: 21899330
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of sodium cations of N3 dye on the photovoltaic performance and stability of dye-sensitized solar cells.
    Andrade L; Zakeeruddin SM; Nazeeruddin MK; Ribeiro HA; Mendes A; Grätzel M
    Chemphyschem; 2009 May; 10(7):1117-24. PubMed ID: 19308974
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electron transport analysis for improvement of solid-state dye-sensitized solar cells using poly(3,4-ethylenedioxythiophene) as hole conductors.
    Fukuri N; Masaki N; Kitamura T; Wada Y; Yanagida S
    J Phys Chem B; 2006 Dec; 110(50):25251-8. PubMed ID: 17165969
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bridged triphenylamine-based dendrimers: tuning enhanced two-photon absorption performance with locked molecular planarity.
    Fang Z; Teo TL; Cai L; Lai YH; Samoc A; Samoc M
    Org Lett; 2009 Jan; 11(1):1-4. PubMed ID: 19067556
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Starburst dendrimers consisting of triphenylamine core and 9-phenylcarbazole-based dendrons: synthesis and properties.
    You J; Li G; Wang Z
    Org Biomol Chem; 2012 Dec; 10(47):9481-90. PubMed ID: 23117896
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deposition of a thin film of TiOx from a titanium metal target as novel blocking layers at conducting glass/TiO2 interfaces in ionic liquid mesoscopic TiO2 dye-sensitized solar cells.
    Xia J; Masaki N; Jiang K; Yanagida S
    J Phys Chem B; 2006 Dec; 110(50):25222-8. PubMed ID: 17165966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.