These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 16159444)
1. [A method of showing thermal effect of iron oxide nanoparticles in alternating magnetic field]. Liu X; Xu B; Xia QS; Zhao TD; Tang JT Ai Zheng; 2005 Sep; 24(9):1148-50. PubMed ID: 16159444 [TBL] [Abstract][Full Text] [Related]
2. Heat-Generating Iron Oxide Multigranule Nanoclusters for Enhancing Hyperthermic Efficacy in Tumor Treatment. Jeon S; Park BC; Lim S; Yoon HY; Jeon YS; Kim BS; Kim YK; Kim K ACS Appl Mater Interfaces; 2020 Jul; 12(30):33483-33491. PubMed ID: 32614594 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and characterization of PEG-iron oxide core-shell composite nanoparticles for thermal therapy. Wydra RJ; Kruse AM; Bae Y; Anderson KW; Hilt JZ Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4660-6. PubMed ID: 24094173 [TBL] [Abstract][Full Text] [Related]
4. Effect of heat dissipation of superparamagnetic nanoparticles in alternating magnetic field on three human cancer cell lines in magnetic fluid hyperthermia. Attar MM; Haghpanahi M Electromagn Biol Med; 2016; 35(4):305-20. PubMed ID: 27015154 [TBL] [Abstract][Full Text] [Related]
5. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy. Caizer C Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375292 [TBL] [Abstract][Full Text] [Related]
6. A multi-controlled drug delivery system based on magnetic mesoporous Fe Zhang Q; Liu J; Yuan K; Zhang Z; Zhang X; Fang X Nanotechnology; 2017 Oct; 28(40):405101. PubMed ID: 28837053 [TBL] [Abstract][Full Text] [Related]
7. Contribution of a 300 kHz alternating magnetic field on magnetic hyperthermia treatment of HepG2 cells. Wang X; Chen Y; Huang C; Wang X; Zhao L; Zhang X; Tang J Bioelectromagnetics; 2013 Feb; 34(2):95-103. PubMed ID: 23059525 [TBL] [Abstract][Full Text] [Related]
8. N-Hydroxysuccinamide functionalized iron oxide nanoparticles conjugated with 5-flurouracil for hyperthermic therapy of malignant liver cancer cells by DNA repair disruption. Veeramani S; Chandrababu L; Rajangam I; Singh NR; Al-Humaid L; Al-Dahmash ND; Balaji R; Chandrasekar N; Hwang MT Int J Biol Macromol; 2023 Oct; 250():126001. PubMed ID: 37532190 [TBL] [Abstract][Full Text] [Related]
9. Tumor-specific nano-entities for optical detection and hyperthermic treatment of breast cancer. Jin H; Hong B; Kakar SS; Kang KA Adv Exp Med Biol; 2008; 614():275-84. PubMed ID: 18290338 [TBL] [Abstract][Full Text] [Related]
10. Application of novel metal nanoparticles as optical/thermal agents in optical mammography and hyperthermic treatment for breast cancer. Jin H; Kang KA Adv Exp Med Biol; 2007; 599():45-52. PubMed ID: 17727246 [TBL] [Abstract][Full Text] [Related]
11. Induced heat property of polyethyleneglycol-coated iron oxide nanoparticles with dispersion stability for hyperthermia. Jang DH; Lee YI; Kim KS; Park ES; Kang SC; Yoon TJ; Choa YH J Nanosci Nanotechnol; 2013 Sep; 13(9):6098-102. PubMed ID: 24205608 [TBL] [Abstract][Full Text] [Related]
12. High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature dosages in the tumor area. Kossatz S; Ludwig R; Dähring H; Ettelt V; Rimkus G; Marciello M; Salas G; Patel V; Teran FJ; Hilger I Pharm Res; 2014 Dec; 31(12):3274-88. PubMed ID: 24890197 [TBL] [Abstract][Full Text] [Related]
13. Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy. Meenach SA; Hilt JZ; Anderson KW Acta Biomater; 2010 Mar; 6(3):1039-46. PubMed ID: 19840875 [TBL] [Abstract][Full Text] [Related]
14. Thermal ablation of tumors using magnetic nanoparticles: an in vivo feasibility study. Hilger I; Hiergeist R; Hergt R; Winnefeld K; Schubert H; Kaiser WA Invest Radiol; 2002 Oct; 37(10):580-6. PubMed ID: 12352168 [TBL] [Abstract][Full Text] [Related]
15. Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells. Nowicka AM; Ruzycka-Ayoush M; Kasprzak A; Kowalczyk A; Bamburowicz-Klimkowska M; Sikorska M; Sobczak K; Donten M; Ruszczynska A; Nowakowska J; Grudzinski IP J Mater Chem B; 2023 May; 11(18):4028-4041. PubMed ID: 36960952 [TBL] [Abstract][Full Text] [Related]
16. Characterization of PEG-iron oxide hydrogel nanocomposites for dual hyperthermia and paclitaxel delivery. Meenach SA; Shapiro JM; Hilt JZ; Anderson KW J Biomater Sci Polym Ed; 2013; 24(9):1112-26. PubMed ID: 23683041 [TBL] [Abstract][Full Text] [Related]
17. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer. Ivkov R; DeNardo SJ; Daum W; Foreman AR; Goldstein RC; Nemkov VS; DeNardo GL Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7093s-7103s. PubMed ID: 16203808 [TBL] [Abstract][Full Text] [Related]
18. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer. Li FR; Yan WH; Guo YH; Qi H; Zhou HX Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033 [TBL] [Abstract][Full Text] [Related]
19. Biocompatible Nanoclusters with High Heating Efficiency for Systemically Delivered Magnetic Hyperthermia. Albarqi HA; Wong LH; Schumann C; Sabei FY; Korzun T; Li X; Hansen MN; Dhagat P; Moses AS; Taratula O; Taratula O ACS Nano; 2019 Jun; 13(6):6383-6395. PubMed ID: 31082199 [TBL] [Abstract][Full Text] [Related]
20. Using thermal energy produced by irradiation of Mn-Zn ferrite magnetic nanoparticles (MZF-NPs) for heat-inducible gene expression. Tang QS; Zhang DS; Cong XM; Wan ML; Jin LQ Biomaterials; 2008 Jun; 29(17):2673-9. PubMed ID: 18396332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]