These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 16159444)
21. Simulation and experimental studies on magnetic hyperthermia with use of superparamagnetic iron oxide nanoparticles. Murase K; Oonoki J; Takata H; Song R; Angraini A; Ausanai P; Matsushita T Radiol Phys Technol; 2011 Jul; 4(2):194-202. PubMed ID: 21667079 [TBL] [Abstract][Full Text] [Related]
22. The Therapeutic Effects of MUC1-C shRNA@Fe Li Z; Guo T; Zhao S; Lin M Int J Nanomedicine; 2023; 18():5651-5670. PubMed ID: 37822991 [TBL] [Abstract][Full Text] [Related]
23. Magnetic mesoporous silica spheres for hyperthermia therapy. Martín-Saavedra FM; Ruíz-Hernández E; Boré A; Arcos D; Vallet-Regí M; Vilaboa N Acta Biomater; 2010 Dec; 6(12):4522-31. PubMed ID: 20601238 [TBL] [Abstract][Full Text] [Related]
24. Carbon encapsulated iron oxide nanoparticles surface engineered with polyethylene glycol-folic acid to induce selective hyperthermia in folate over expressed cancer cells. Sadhasivam S; Savitha S; Wu CJ; Lin FH; Stobiński L Int J Pharm; 2015 Mar; 480(1-2):8-14. PubMed ID: 25601197 [TBL] [Abstract][Full Text] [Related]
25. Hyperthermia of Magnetically Soft-Soft Core-Shell Ferrite Nanoparticles. Narayanaswamy V; Jagal J; Khurshid H; Al-Omari IA; Haider M; Kamzin AS; Obaidat IM; Issa B Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499152 [TBL] [Abstract][Full Text] [Related]
26. Thermal analysis of magnetic nanoparticle in alternating magnetic field on human HCT-116 colon cancer cell line. Attar MM; Amanpour S; Haghpanahi M; Haddadi M; Rezaei G; Muhammadnejad S; HajiAkhoundzadeh M; Barati T; Sadeghi F; Javadi S Int J Hyperthermia; 2016 Dec; 32(8):858-867. PubMed ID: 27418409 [TBL] [Abstract][Full Text] [Related]
27. Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Kawashita M; Tanaka M; Kokubo T; Inoue Y; Yao T; Hamada S; Shinjo T Biomaterials; 2005 May; 26(15):2231-8. PubMed ID: 15585224 [TBL] [Abstract][Full Text] [Related]
28. Herceptin-directed nanoparticles activated by an alternating magnetic field selectively kill HER-2 positive human breast cells in vitro via hyperthermia. Zhang J; Dewilde AH; Chinn P; Foreman A; Barry S; Kanne D; Braunhut SJ Int J Hyperthermia; 2011; 27(7):682-97. PubMed ID: 21992561 [TBL] [Abstract][Full Text] [Related]
29. Formation and characterization of β-cyclodextrin (β-CD) - polyethyleneglycol (PEG) - polyethyleneimine (PEI) coated Fe3O4 nanoparticles for loading and releasing 5-Fluorouracil drug. Prabha G; Raj V Biomed Pharmacother; 2016 May; 80():173-182. PubMed ID: 27133054 [TBL] [Abstract][Full Text] [Related]
30. Magnetic and hydrogel composite materials for hyperthermia applications. Lao LL; Ramanujan RV J Mater Sci Mater Med; 2004 Oct; 15(10):1061-4. PubMed ID: 15516865 [TBL] [Abstract][Full Text] [Related]
31. Reduced astrocyte viability at physiological temperatures from magnetically activated iron oxide nanoparticles. Schaub NJ; Rende D; Yuan Y; Gilbert RJ; Borca-Tasciuc DA Chem Res Toxicol; 2014 Dec; 27(12):2023-35. PubMed ID: 25347722 [TBL] [Abstract][Full Text] [Related]
32. Multi-modal Mn-Zn ferrite nanocrystals for magnetically-induced cancer targeted hyperthermia: a comparison of passive and active targeting effects. Xie J; Yan C; Yan Y; Chen L; Song L; Zang F; An Y; Teng G; Gu N; Zhang Y Nanoscale; 2016 Oct; 8(38):16902-15. PubMed ID: 27427416 [TBL] [Abstract][Full Text] [Related]
33. A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study. Balivada S; Rachakatla RS; Wang H; Samarakoon TN; Dani RK; Pyle M; Kroh FO; Walker B; Leaym X; Koper OB; Tamura M; Chikan V; Bossmann SH; Troyer DL BMC Cancer; 2010 Mar; 10():119. PubMed ID: 20350328 [TBL] [Abstract][Full Text] [Related]
34. Polyaniline shell cross-linked Fe3O4 magnetic nanoparticles for heat activated killing of cancer cells. Rana S; Jadhav NV; Barick KC; Pandey BN; Hassan PA Dalton Trans; 2014 Aug; 43(32):12263-71. PubMed ID: 24948377 [TBL] [Abstract][Full Text] [Related]
35. Local moderate magnetically induced hyperthermia using an implant formed in situ in a mouse tumor model. Le Renard PE; Buchegger F; Petri-Fink A; Bosman F; Rüfenacht D; Hofmann H; Doelker E; Jordan O Int J Hyperthermia; 2009 May; 25(3):229-39. PubMed ID: 19437238 [TBL] [Abstract][Full Text] [Related]
36. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration. Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472 [TBL] [Abstract][Full Text] [Related]
37. Preparation and characteristics of magnetite-labelled antibody with the use of poly(ethylene glycol) derivatives. Suzuki M; Shinkai M; Kamihira M; Kobayashi T Biotechnol Appl Biochem; 1995 Jun; 21(3):335-45. PubMed ID: 7794535 [TBL] [Abstract][Full Text] [Related]
38. Biofunctionalization of magnetite nanoparticles with stevioside: effect on the size and thermal behaviour for use in hyperthermia applications. Gupta R; Sharma D Int J Hyperthermia; 2019; 36(1):302-312. PubMed ID: 30729822 [TBL] [Abstract][Full Text] [Related]
39. Clickable Polymer Ligand-Functionalized Iron Oxide Nanocubes: A Promising Nanoplatform for 'Local Hot Spots' Magnetically Triggered Drug Release. Mai BT; Conteh JS; Gavilán H; Di Girolamo A; Pellegrino T ACS Appl Mater Interfaces; 2022 Nov; 14(43):48476-48488. PubMed ID: 36256634 [TBL] [Abstract][Full Text] [Related]