BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 16159773)

  • 1. Bacterial cyanide oxygenase is a suite of enzymes catalyzing the scavenging and adventitious utilization of cyanide as a nitrogenous growth substrate.
    Fernandez RF; Kunz DA
    J Bacteriol; 2005 Sep; 187(18):6396-402. PubMed ID: 16159773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic assimilation of cyanide via pterin-dependent oxygenolytic cleavage to ammonia and formate in Pseudomonas fluorescens NCIMB 11764.
    Fernandez RF; Dolghih E; Kunz DA
    Appl Environ Microbiol; 2004 Jan; 70(1):121-8. PubMed ID: 14711633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that bacterial cyanide oxygenase is a pterin-dependent hydroxylase.
    Kunz DA; Fernandez RF; Parab P
    Biochem Biophys Res Commun; 2001 Sep; 287(2):514-8. PubMed ID: 11554758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternative routes of enzymic cyanide metabolism in Pseudomonas fluorescens NCIMB 11764.
    Kunz DA; Wang CS; Chen JL
    Microbiology (Reading); 1994 Jul; 140 ( Pt 7)():1705-12. PubMed ID: 8075806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of cyanide as nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764: evidence for multiple pathways of metabolic conversion.
    Kunz DA; Nagappan O; Silva-Avalos J; Delong GT
    Appl Environ Microbiol; 1992 Jun; 58(6):2022-9. PubMed ID: 1622281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation of alpha-keto acids as essential components in cyanide assimilation by Pseudomonas fluorescens NCIMB 11764.
    Kunz DA; Chen JL; Pan G
    Appl Environ Microbiol; 1998 Nov; 64(11):4452-9. PubMed ID: 9797306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CynD, the cyanide dihydratase from Bacillus pumilus: gene cloning and structural studies.
    Jandhyala D; Berman M; Meyers PR; Sewell BT; Willson RC; Benedik MJ
    Appl Environ Microbiol; 2003 Aug; 69(8):4794-805. PubMed ID: 12902273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic Characterization of
    Justo Arevalo S; Zapata Sifuentes D; Cuba Portocarrero A; Brescia Reátegui M; Monge Pimentel C; Farage Martins L; Marques Pierry P; Morais Piroupo C; Guerra Santa Cruz A; Quiñones Aguilar M; Shaker Farah C; Setubal JC; da Silva AM
    Appl Environ Microbiol; 2022 Jul; 88(14):e0091622. PubMed ID: 35762789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analeptic agent from microbes upon cyanide degradation.
    Murugesan T; Durairaj N; Ramasamy M; Jayaraman K; Palaniswamy M; Jayaraman A
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1557-1565. PubMed ID: 29285551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Draft genome sequence of the cyanide-utilizing bacterium Pseudomonas fluorescens strain NCIMB 11764.
    Vilo CA; Benedik MJ; Kunz DA; Dong Q
    J Bacteriol; 2012 Dec; 194(23):6618-9. PubMed ID: 23144379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization of E. coli expressing Bacillus pumilus CynD in three organic polymer matrices.
    Carmona-Orozco ML; Panay AJ
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5401-5410. PubMed ID: 31065754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyanide hydratases and cyanide dihydratases: emerging tools in the biodegradation and biodetection of cyanide.
    Martínková L; Veselá AB; Rinágelová A; Chmátal M
    Appl Microbiol Biotechnol; 2015 Nov; 99(21):8875-82. PubMed ID: 26329848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification, characterization and gene cloning of 6-hydroxynicotinate 3-monooxygenase from Pseudomonas fluorescens TN5.
    Nakano H; Wieser M; Hurh B; Kawai T; Yoshida T; Yamane T; Nagasawa T
    Eur J Biochem; 1999 Feb; 260(1):120-6. PubMed ID: 10091591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyanide hydrolysis in a cyanide-degrading bacterium, Pseudomonas stutzeri AK61, by cyanidase.
    Watanabe A; Yano K; Ikebukuro K; Karube I
    Microbiology (Reading); 1998 Jun; 144 ( Pt 6)():1677-1682. PubMed ID: 9639937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic Insights into Cyanide Biodegradation in the
    Sáez LP; Rodríguez-Caballero G; Olaya-Abril A; Cabello P; Moreno-Vivián C; Roldán MD; Luque-Almagro VM
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral characterization of a pteridine derivative from cyanide-utilizing bacterium Bacillus subtilis - JN989651.
    Durairaju Nisshanthini S; Teresa Infanta S AK; Raja DS; Natarajan K; Palaniswamy M; Angayarkanni J
    J Microbiol; 2015 Apr; 53(4):262-71. PubMed ID: 25740375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is cyanate a carbonic anhydrase substrate?
    Supuran CT; Conroy CW; Maren TH
    Proteins; 1997 Feb; 27(2):272-8. PubMed ID: 9061790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-component flavin-dependent pyrrole-2-carboxylate monooxygenase from Rhodococcus sp.
    Becker D; Schräder T; Andreesen JR
    Eur J Biochem; 1997 Nov; 249(3):739-47. PubMed ID: 9395321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4-Hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB. A novel flavoprotein catalyzing Baeyer-Villiger oxidation of aromatic compounds.
    Kamerbeek NM; Moonen MJ; Van Der Ven JG; Van Berkel WJ; Fraaije MW; Janssen DB
    Eur J Biochem; 2001 May; 268(9):2547-57. PubMed ID: 11322873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial metabolism of quinoline and related compounds. XVIII. Purification and some properties of the molybdenum- and iron-containing quinaldic acid 4-oxidoreductase from Serratia marcescens 2CC-1.
    Fetzner S; Lingens F
    Biol Chem Hoppe Seyler; 1993 Jun; 374(6):363-76. PubMed ID: 8357532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.