BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 16159894)

  • 1. Accumulation of nonesterified fatty acids causes the sustained energetic deficit in kidney proximal tubules after hypoxia-reoxygenation.
    Feldkamp T; Kribben A; Roeser NF; Senter RA; Weinberg JM
    Am J Physiol Renal Physiol; 2006 Feb; 290(2):F465-77. PubMed ID: 16159894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for involvement of nonesterified fatty acid-induced protonophoric uncoupling during mitochondrial dysfunction caused by hypoxia and reoxygenation.
    Feldkamp T; Weinberg JM; Hörbelt M; Von Kropff C; Witzke O; Nürnberger J; Kribben A
    Nephrol Dial Transplant; 2009 Jan; 24(1):43-51. PubMed ID: 18678559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial dysfunction induced by pancreatic and crotalic (Crotalus durissus terrificus) phospholipases A2 on rabbit proximal tubules suspensions.
    Amora DN; Costa Martins AM; Roeser N; Senter R; Ostrowsky T; Weinberg JM; Monteiro HS
    Toxicon; 2008 Dec; 52(8):852-7. PubMed ID: 18835290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alleviation of fatty acid and hypoxia-reoxygenation-induced proximal tubule deenergization by ADP/ATP carrier inhibition and glutamate.
    Feldkamp T; Kribben A; Roeser NF; Ostrowski T; Weinberg JM
    Am J Physiol Renal Physiol; 2007 May; 292(5):F1606-16. PubMed ID: 17244890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. F1FO-ATPase activity and ATP dependence of mitochondrial energization in proximal tubules after hypoxia/reoxygenation.
    Feldkamp T; Kribben A; Weinberg JM
    J Am Soc Nephrol; 2005 Jun; 16(6):1742-51. PubMed ID: 15843467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of mitochondrial membrane potential in proximal tubules after hypoxia-reoxygenation.
    Feldkamp T; Kribben A; Weinberg JM
    Am J Physiol Renal Physiol; 2005 Jun; 288(6):F1092-102. PubMed ID: 15625081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate modulation of fatty acid effects on energization and respiration of kidney proximal tubules during hypoxia/reoxygenation.
    Bienholz A; Al-Taweel A; Roeser NF; Kribben A; Feldkamp T; Weinberg JM
    PLoS One; 2014; 9(4):e94584. PubMed ID: 24728405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preservation of complex I function during hypoxia-reoxygenation-induced mitochondrial injury in proximal tubules.
    Feldkamp T; Kribben A; Roeser NF; Senter RA; Kemner S; Venkatachalam MA; Nissim I; Weinberg JM
    Am J Physiol Renal Physiol; 2004 Apr; 286(4):F749-59. PubMed ID: 14665431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maleate nephrotoxicity: mechanisms of injury and correlates with ischemic/hypoxic tubular cell death.
    Zager RA; Johnson AC; Naito M; Bomsztyk K
    Am J Physiol Renal Physiol; 2008 Jan; 294(1):F187-97. PubMed ID: 17942567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclophilin D and the mitochondrial permeability transition in kidney proximal tubules after hypoxic and ischemic injury.
    Park JS; Pasupulati R; Feldkamp T; Roeser NF; Weinberg JM
    Am J Physiol Renal Physiol; 2011 Jul; 301(1):F134-50. PubMed ID: 21490135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetic determinants of tyrosine phosphorylation of focal adhesion proteins during hypoxia/reoxygenation of kidney proximal tubules.
    Weinberg JM; Venkatachalam MA; Roeser NF; Senter RA; Nissim I
    Am J Pathol; 2001 Jun; 158(6):2153-64. PubMed ID: 11395393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic and aerobic pathways for salvage of proximal tubules from hypoxia-induced mitochondrial injury.
    Weinberg JM; Venkatachalam MA; Roeser NF; Saikumar P; Dong Z; Senter RA; Nissim I
    Am J Physiol Renal Physiol; 2000 Nov; 279(5):F927-43. PubMed ID: 11053054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonesterified fatty acid accumulation and release during heart muscle-cell (myocyte) injury: modulation by extracellular "acceptor".
    Janero DR; Burghardt C
    J Cell Physiol; 1989 Jul; 140(1):150-60. PubMed ID: 2738109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates.
    Weinberg JM; Venkatachalam MA; Roeser NF; Nissim I
    Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2826-31. PubMed ID: 10717001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the mitochondrial permeability transition in kidney proximal tubules and its alteration during hypoxia-reoxygenation.
    Feldkamp T; Park JS; Pasupulati R; Amora D; Roeser NF; Venkatachalam MA; Weinberg JM
    Am J Physiol Renal Physiol; 2009 Dec; 297(6):F1632-46. PubMed ID: 19741014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of free fatty acids in hypoxia-induced injury to renal proximal tubule cells.
    Humes HD; Nguyen VD; Cieslinski DA; Messana JM
    Am J Physiol; 1989 Apr; 256(4 Pt 2):F688-96. PubMed ID: 2705539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linoleic acid epoxide promotes the maintenance of mitochondrial function and active Na+ transport following hypoxia.
    Nowak G; Grant DF; Moran JH
    Toxicol Lett; 2004 Mar; 147(2):161-75. PubMed ID: 14757320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linoleic acid prevents chloride influx and cellular lysis in rabbit renal proximal tubules exposed to mitochondrial toxicants.
    Moran JH; Mitchell LA; Grant DF
    Toxicol Appl Pharmacol; 2001 Nov; 176(3):153-61. PubMed ID: 11714247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. S-[(1 and 2)-phenyl-2-hydroxyethyl]-cysteine-induced cytotoxicity to rat renal proximal tubules.
    Chakrabarti SK; Denniel C
    Toxicol Appl Pharmacol; 1996 Apr; 137(2):285-94. PubMed ID: 8661354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PKCepsilon activation augments cardiac mitochondrial respiratory post-anoxic reserve--a putative mechanism in PKCepsilon cardioprotection.
    McCarthy J; McLeod CJ; Minners J; Essop MF; Ping P; Sack MN
    J Mol Cell Cardiol; 2005 Apr; 38(4):697-700. PubMed ID: 15808847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.