These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 16159901)
1. Reactive oxygen species production via NADPH oxidase mediates TGF-beta-induced cytoskeletal alterations in endothelial cells. Hu T; Ramachandrarao SP; Siva S; Valancius C; Zhu Y; Mahadev K; Toh I; Goldstein BJ; Woolkalis M; Sharma K Am J Physiol Renal Physiol; 2005 Oct; 289(4):F816-25. PubMed ID: 16159901 [TBL] [Abstract][Full Text] [Related]
2. TGF-beta-induced p38 activation is mediated by Rac1-regulated generation of reactive oxygen species in cultured human keratinocytes. Chiu C; Maddock DA; Zhang Q; Souza KP; Townsend AR; Wan Y Int J Mol Med; 2001 Sep; 8(3):251-5. PubMed ID: 11494050 [TBL] [Abstract][Full Text] [Related]
3. Nox4 mediates the expression of plasminogen activator inhibitor-1 via p38 MAPK pathway in cultured human endothelial cells. Jaulmes A; Sansilvestri-Morel P; Rolland-Valognes G; Bernhardt F; Gaertner R; Lockhart BP; Cordi A; Wierzbicki M; Rupin A; Verbeuren TJ Thromb Res; 2009 Sep; 124(4):439-46. PubMed ID: 19540572 [TBL] [Abstract][Full Text] [Related]
4. Nox4-derived ROS signaling contributes to TGF-β-induced epithelial-mesenchymal transition in pancreatic cancer cells. Hiraga R; Kato M; Miyagawa S; Kamata T Anticancer Res; 2013 Oct; 33(10):4431-8. PubMed ID: 24123012 [TBL] [Abstract][Full Text] [Related]
5. Nox4 mediates hypoxia-stimulated myofibroblast differentiation in nasal polyp-derived fibroblasts. Moon YM; Kang HJ; Cho JS; Park IH; Lee HM Int Arch Allergy Immunol; 2012; 159(4):399-409. PubMed ID: 22846744 [TBL] [Abstract][Full Text] [Related]
6. Nox4 overexpression activates reactive oxygen species and p38 MAPK in human endothelial cells. Goettsch C; Goettsch W; Muller G; Seebach J; Schnittler HJ; Morawietz H Biochem Biophys Res Commun; 2009 Mar; 380(2):355-60. PubMed ID: 19280689 [TBL] [Abstract][Full Text] [Related]
7. AST IV inhibits H₂O₂-induced human umbilical vein endothelial cell apoptosis by suppressing Nox4 expression through the TGF-β1/Smad2 pathway. Ma Y; Li W; Yin Y; Li W Int J Mol Med; 2015 Jun; 35(6):1667-74. PubMed ID: 25891879 [TBL] [Abstract][Full Text] [Related]
8. Overactivation of the MEK/ERK pathway in liver tumor cells confers resistance to TGF-{beta}-induced cell death through impairing up-regulation of the NADPH oxidase NOX4. Caja L; Sancho P; Bertran E; Iglesias-Serret D; Gil J; Fabregat I Cancer Res; 2009 Oct; 69(19):7595-602. PubMed ID: 19773433 [TBL] [Abstract][Full Text] [Related]
9. Kallistatin inhibits TGF-β-induced endothelial-mesenchymal transition by differential regulation of microRNA-21 and eNOS expression. Guo Y; Li P; Bledsoe G; Yang ZR; Chao L; Chao J Exp Cell Res; 2015 Sep; 337(1):103-10. PubMed ID: 26156753 [TBL] [Abstract][Full Text] [Related]
10. Folic Acid Attenuates Vascular Endothelial Cell Injury Caused by Hypoxia via the Inhibition of ERK1/2/NOX4/ROS Pathway. Cheng F; Lan J; Xia W; Tu C; Chen B; Li S; Pan W Cell Biochem Biophys; 2016 Jun; 74(2):205-11. PubMed ID: 26906511 [TBL] [Abstract][Full Text] [Related]
11. Inhibiting cancer metastasis via targeting NAPDH oxidase 4. Zhang B; Liu Z; Hu X Biochem Pharmacol; 2013 Jul; 86(2):253-66. PubMed ID: 23688500 [TBL] [Abstract][Full Text] [Related]
12. NOX2 and NOX4 mediate proliferative response in endothelial cells. Petry A; Djordjevic T; Weitnauer M; Kietzmann T; Hess J; Görlach A Antioxid Redox Signal; 2006; 8(9-10):1473-84. PubMed ID: 16987004 [TBL] [Abstract][Full Text] [Related]
13. The mechanism of long-term low-dose asymmetric dimethylarginine inducing transforming growth factor-β expression in endothelial cells. Feng Y; Zhang D; Zhang Y; Zhang Q; Liu W Int J Mol Med; 2013 Jan; 31(1):67-74. PubMed ID: 23175152 [TBL] [Abstract][Full Text] [Related]
14. Adenoviral gene transfer allows Smad-responsive gene promoter analyses and delineation of type I receptor usage of transforming growth factor-beta family ligands in cultured human granulosa luteal cells. Kaivo-Oja N; Mottershead DG; Mazerbourg S; Myllymaa S; Duprat S; Gilchrist RB; Groome NP; Hsueh AJ; Ritvos O J Clin Endocrinol Metab; 2005 Jan; 90(1):271-8. PubMed ID: 15483083 [TBL] [Abstract][Full Text] [Related]
15. Roles of reactive oxygen species in angiopoietin-1/tie-2 receptor signaling. Harfouche R; Malak NA; Brandes RP; Karsan A; Irani K; Hussain SN FASEB J; 2005 Oct; 19(12):1728-30. PubMed ID: 16049136 [TBL] [Abstract][Full Text] [Related]
16. Role of reactive oxygen species in transforming growth factor beta1-induced alpha smooth-muscle actin and collagen production in nasal polyp-derived fibroblasts. Park IH; Park SJ; Cho JS; Moon YM; Kim TH; Lee SH; Lee HM Int Arch Allergy Immunol; 2012; 159(3):278-86. PubMed ID: 22722757 [TBL] [Abstract][Full Text] [Related]
17. Smad-independent pathway involved in transforming growth factor β1-induced Nox4 expression and proliferation of endothelial cells. Hakami NY; Wong H; Shah MH; Dusting GJ; Jiang F; Peshavariya HM Naunyn Schmiedebergs Arch Pharmacol; 2015 Mar; 388(3):319-26. PubMed ID: 25428269 [TBL] [Abstract][Full Text] [Related]
18. Source of early reactive oxygen species in the apoptosis induced by transforming growth factor-beta in fetal rat hepatocytes. Herrera B; Murillo MM; Alvarez-Barrientos A; Beltrán J; Fernández M; Fabregat I Free Radic Biol Med; 2004 Jan; 36(1):16-26. PubMed ID: 14732287 [TBL] [Abstract][Full Text] [Related]
19. Activation of endothelial cells after exposure to ambient ultrafine particles: the role of NADPH oxidase. Mo Y; Wan R; Chien S; Tollerud DJ; Zhang Q Toxicol Appl Pharmacol; 2009 Apr; 236(2):183-93. PubMed ID: 19371610 [TBL] [Abstract][Full Text] [Related]
20. Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Senturk S; Mumcuoglu M; Gursoy-Yuzugullu O; Cingoz B; Akcali KC; Ozturk M Hepatology; 2010 Sep; 52(3):966-74. PubMed ID: 20583212 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]