These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 1616)

  • 21. Dehydrogenase and transhydrogenase properties of the soluble NADH dehydrogenase of bovine heart mitochondria.
    Hatefi Y; Galante YM
    Proc Natl Acad Sci U S A; 1977 Mar; 74(3):846-50. PubMed ID: 15255
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel NADPH:(bound) NADP+ reductase and NADH:(bound) NADP+ transhydrogenase function in bovine liver catalase.
    Gaetani GF; Ferraris AM; Sanna P; Kirkman HN
    Biochem J; 2005 Feb; 385(Pt 3):763-8. PubMed ID: 15456401
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Localization of the cytochrome cd1 and copper nitrite reductases in denitrifying bacteria.
    Coyne MS; Arunakumari A; Pankratz HS; Tiedje JM
    J Bacteriol; 1990 May; 172(5):2558-62. PubMed ID: 2158973
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 6-phospho-D-gluconate dehydrogenase from Pseudomonas fluorescens. Properties and subunit structure.
    Stournaras C; Maurer P; Kurz G
    Eur J Biochem; 1983 Feb; 130(2):391-6. PubMed ID: 6402366
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chirality of xylitol-oxidizing enzymes from mammalian liver.
    Alizade MA; Brendel K; Gaede K
    FEBS Lett; 1976 Aug; 67(1):41-4. PubMed ID: 8339
    [No Abstract]   [Full Text] [Related]  

  • 26. The mechanism of oxidation of reduced nicotinamide dinucleotide phosphate by submitochondrial particles from beef heart.
    Rydström J; Montelius J; Bäckström D; Ernster L
    Biochim Biophys Acta; 1978 Mar; 501(3):370-80. PubMed ID: 24468
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reexamination of the interaction between ferredoxin:NADP reductases and NADP.
    Dykes J; Davis DJ
    Arch Biochem Biophys; 1982 Oct; 218(1):46-50. PubMed ID: 7149741
    [No Abstract]   [Full Text] [Related]  

  • 28. Tentative classification of NAD(P)-linked dehydrogenases in regard to their stereochemistry of hydrogen transfer to the coenzyme.
    Alizade MA; Brendel K
    Naturwissenschaften; 1975 Jul; 62(7):346-8. PubMed ID: 624
    [No Abstract]   [Full Text] [Related]  

  • 29. Interaction of NADP(H) with oxidized and reduced P450 reductase during catalysis. Studies with nucleotide analogues.
    Murataliev MB; Feyereisen R
    Biochemistry; 2000 May; 39(17):5066-74. PubMed ID: 10819972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial malate dehydrogenase, decarboxylating ("malic" enzyme) and transhydrogenase activities of adult Hymenolepis microstoma (Cestoda).
    Fioravanti CF
    J Parasitol; 1982 Apr; 68(2):213-20. PubMed ID: 7077455
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sulfinic and sulfonic analogs of gamma-aminobutyric acid and succinate semialdehyde, new substrates for the aminobutyrate aminotransferase and the succinate semialdehyde dehydrogenase of Pseudomonas fluorescens.
    De Gracia DG; Jollés-Bergeret B
    Biochim Biophys Acta; 1973 Jul; 315(1):49-60. PubMed ID: 4147571
    [No Abstract]   [Full Text] [Related]  

  • 32. Regulation of the NADH and NADPH-ferredoxin oxidoreductases in clostridia of the butyric group.
    Petitdemange H; Cherrier C; Raval R; Gay R
    Biochim Biophys Acta; 1976 Feb; 421(2):334-7. PubMed ID: 3218
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of the pentose phosphate cycle in the brain by NADPH inhibition of dehydrogenase system.
    Domańska-Janik K; Zaleska M
    Bull Acad Pol Sci Biol; 1977; 25(2):119-24. PubMed ID: 16689
    [No Abstract]   [Full Text] [Related]  

  • 34. The importance of monopole-monopole and monopole-dipole interactions on the binding of NADPH and NADPH analogues to p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Effects of pH and ionic strength.
    Wijnands RA; van der Zee J; Van Leeuwen JW; Van Berkel WJ; Müller F
    Eur J Biochem; 1984 Mar; 139(3):637-44. PubMed ID: 6421584
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studies of the control of luminescence in Beneckea harveyi: properties of the NADH and NADPH:FMN oxidoreductases.
    Jablonski E; DeLuca M
    Biochemistry; 1978 Feb; 17(4):672-8. PubMed ID: 23827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complete nucleotide sequence of Pseudomonas fluorescens D-galactose dehydrogenase gene.
    Sperka S; Zehelein E; Fiedler S; Fischer S; Sommer R; Buckel P
    Nucleic Acids Res; 1989 Jul; 17(13):5402. PubMed ID: 2503815
    [No Abstract]   [Full Text] [Related]  

  • 37. [Activation, by various aldoses, of dichlorophenol-indophenol reduction by endogenous constituents of a preparation of glucose dehydrogenase from Pseudomonas fluorescens].
    Wurtz B
    C R Seances Soc Biol Fil; 1979; 173(4):753-7. PubMed ID: 160821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Involvement of fumarase C and NADH oxidase in metabolic adaptation of Pseudomonas fluorescens cells evoked by aluminum and gallium toxicity.
    Chenier D; Beriault R; Mailloux R; Baquie M; Abramia G; Lemire J; Appanna V
    Appl Environ Microbiol; 2008 Jul; 74(13):3977-84. PubMed ID: 18469122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complex-forming properties of butanedione-modified ferredoxin-NADP+ reductase with NADP+ and ferredoxin.
    Bookjans G; Böger P
    Arch Biochem Biophys; 1979 May; 194(2):387-93. PubMed ID: 36038
    [No Abstract]   [Full Text] [Related]  

  • 40. Stereochemistry of NADPH oxidation by dihydropyrimidine dehydrogenase from pig liver.
    Podschun B
    Biochem Biophys Res Commun; 1992 Jan; 182(2):609-16. PubMed ID: 1734873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.