BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16160061)

  • 1. A novel thiol oxidation-based mechanism for adriamycin-induced cell injury in human macrophages.
    Asmis R; Wang Y; Xu L; Kisgati M; Begley JG; Mieyal JJ
    FASEB J; 2005 Nov; 19(13):1866-8. PubMed ID: 16160061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanism of glutathione-mediated protection from oxidized low-density lipoprotein-induced cell injury in human macrophages: role of glutathione reductase and glutaredoxin.
    Wang Y; Qiao M; Mieyal JJ; Asmis LM; Asmis R
    Free Radic Biol Med; 2006 Sep; 41(5):775-85. PubMed ID: 16895798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adriamycin promotes macrophage dysfunction in mice.
    Asmis R; Qiao M; Rossi RR; Cholewa J; Xu L; Asmis LM
    Free Radic Biol Med; 2006 Jul; 41(1):165-74. PubMed ID: 16781464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkylation-induced oxidative cell injury of renal proximal tubular cells: involvement of glutathione redox-cycle inhibition.
    van de Water B; Zoeteweij JP; Nagelkerke JF
    Arch Biochem Biophys; 1996 Mar; 327(1):71-80. PubMed ID: 8615698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutaredoxin mediates Akt and eNOS activation by flow in a glutathione reductase-dependent manner.
    Wang J; Pan S; Berk BC
    Arterioscler Thromb Vasc Biol; 2007 Jun; 27(6):1283-8. PubMed ID: 17431186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S-glutathionylation in human platelets by a thiol-disulfide exchange-independent mechanism.
    Dalle-Donne I; Giustarini D; Colombo R; Milzani A; Rossi R
    Free Radic Biol Med; 2005 Jun; 38(11):1501-10. PubMed ID: 15890624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Curcumin mediates time and concentration dependent regulation of redox homeostasis leading to cytotoxicity in macrophage cells.
    Kunwar A; Sandur SK; Krishna M; Priyadarsini KI
    Eur J Pharmacol; 2009 Jun; 611(1-3):8-16. PubMed ID: 19344704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential toxicity of antimonial compounds and their effects on glutathione homeostasis in a human leukaemia monocyte cell line.
    Wyllie S; Fairlamb AH
    Biochem Pharmacol; 2006 Jan; 71(3):257-67. PubMed ID: 16318845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biphasic lindane-induced oxidation of glutathione and inhibition of gap junctions in myometrial cells.
    Caruso RL; Upham BL; Harris C; Trosko JE
    Toxicol Sci; 2005 Aug; 86(2):417-26. PubMed ID: 15901910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox modulation of tau and microtubule-associated protein-2 by the glutathione/glutaredoxin reductase system.
    Landino LM; Robinson SH; Skreslet TE; Cabral DM
    Biochem Biophys Res Commun; 2004 Oct; 323(1):112-7. PubMed ID: 15351709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of reversible cysteine-targeted protein oxidation by an endogenous electrophile 15-deoxy-delta12,14-prostaglandin J2.
    Ishii T; Uchida K
    Chem Res Toxicol; 2004 Oct; 17(10):1313-22. PubMed ID: 15487891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro nicotine-induced oxidative stress in mice peritoneal macrophages: a dose-dependent approach.
    Mahapatra SK; Das S; Bhattacharjee S; Gautam N; Majumdar S; Roy S
    Toxicol Mech Methods; 2009 Feb; 19(2):100-8. PubMed ID: 19778253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein Thiol Redox Signaling in Monocytes and Macrophages.
    Short JD; Downs K; Tavakoli S; Asmis R
    Antioxid Redox Signal; 2016 Nov; 25(15):816-835. PubMed ID: 27288099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile oxidation of leucomethylene blue and dihydroflavins by artemisinins: relationship with flavoenzyme function and antimalarial mechanism of action.
    Haynes RK; Chan WC; Wong HN; Li KY; Wu WK; Fan KM; Sung HH; Williams ID; Prosperi D; Melato S; Coghi P; Monti D
    ChemMedChem; 2010 Aug; 5(8):1282-99. PubMed ID: 20629071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory control of human cytosolic branched-chain aminotransferase by oxidation and S-glutathionylation and its interactions with redox sensitive neuronal proteins.
    Conway ME; Coles SJ; Islam MM; Hutson SM
    Biochemistry; 2008 May; 47(19):5465-79. PubMed ID: 18419134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular effects of photogenerated oxidants and long-lived, reactive, hydroperoxide photoproducts.
    Rahmanto AS; Morgan PE; Hawkins CL; Davies MJ
    Free Radic Biol Med; 2010 Nov; 49(10):1505-15. PubMed ID: 20708682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutathione oxidation and embryotoxicity elicited by diamide in the developing rat conceptus in vitro.
    Hiranruengchok R; Harris C
    Toxicol Appl Pharmacol; 1993 May; 120(1):62-71. PubMed ID: 8511783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The involvement of an oxidative mechanism in the adriamycin induced toxicity in neonatal rat heart cell cultures.
    Julicher RH; van der Laarse A; Sterrenberg L; Bloys van Treslong CH; Bast A; Noordhoek J
    Res Commun Chem Pathol Pharmacol; 1985 Jan; 47(1):35-47. PubMed ID: 3983469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2-Deoxy-D-glucose-induced cytotoxicity and radiosensitization in tumor cells is mediated via disruptions in thiol metabolism.
    Lin X; Zhang F; Bradbury CM; Kaushal A; Li L; Spitz DR; Aft RL; Gius D
    Cancer Res; 2003 Jun; 63(12):3413-7. PubMed ID: 12810678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc stimulates the production of toxic reactive oxygen species (ROS) and inhibits glutathione reductase in astrocytes.
    Bishop GM; Dringen R; Robinson SR
    Free Radic Biol Med; 2007 Apr; 42(8):1222-30. PubMed ID: 17382203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.