BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 16160255)

  • 1. Canonical correlation analysis for data reduction in data mining applied to predictive models for breast cancer recurrence.
    Razavi AR; Gill H; Ahlfeldt H; Shahsavar N
    Stud Health Technol Inform; 2005; 116():175-80. PubMed ID: 16160255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring cancer register data to find risk factors for recurrence of breast cancer--application of Canonical Correlation Analysis.
    Razavi AR; Gill H; Stål O; Sundquist M; Thorstenson S; Ahlfeldt H; Shahsavar N;
    BMC Med Inform Decis Mak; 2005 Aug; 5():29. PubMed ID: 16111503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and comparing data mining algorithms for prediction of recurrence of breast cancer.
    Mosayebi A; Mojaradi B; Bonyadi Naeini A; Khodadad Hosseini SH
    PLoS One; 2020; 15(10):e0237658. PubMed ID: 33057328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixture classification model based on clinical markers for breast cancer prognosis.
    Zeng T; Liu J
    Artif Intell Med; 2010; 48(2-3):129-37. PubMed ID: 20005686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Training artificial neural networks directly on the concordance index for censored data using genetic algorithms.
    Kalderstam J; Edén P; Bendahl PO; Strand C; Fernö M; Ohlsson M
    Artif Intell Med; 2013 Jun; 58(2):125-32. PubMed ID: 23582884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting breast cancer survivability: a comparison of three data mining methods.
    Delen D; Walker G; Kadam A
    Artif Intell Med; 2005 Jun; 34(2):113-27. PubMed ID: 15894176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applying data mining for the analysis of breast cancer data.
    Liou DM; Chang WP
    Methods Mol Biol; 2015; 1246():175-89. PubMed ID: 25417087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the graft survival for heart-lung transplantation patients: an integrated data mining methodology.
    Oztekin A; Delen D; Kong ZJ
    Int J Med Inform; 2009 Dec; 78(12):e84-96. PubMed ID: 19497782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel method for predicting kidney stone type using ensemble learning.
    Kazemi Y; Mirroshandel SA
    Artif Intell Med; 2018 Jan; 84():117-126. PubMed ID: 29241659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Canonical Correlation Analysis for Detecting Risk Factors Leading to Recurrence of Breast Cancer.
    Sadoughi F; Lotfnezhad Afshar H; Olfatbakhsh A; Mehrdad N
    Iran Red Crescent Med J; 2016 Mar; 18(3):e23131. PubMed ID: 27231580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of three data mining models for prediction of advanced schistosomiasis prognosis in the Hubei province.
    Li G; Zhou X; Liu J; Chen Y; Zhang H; Chen Y; Liu J; Jiang H; Yang J; Nie S
    PLoS Negl Trop Dis; 2018 Feb; 12(2):e0006262. PubMed ID: 29447165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive model for 5-year mortality after breast cancer surgery in Taiwan residents.
    Huang SH; Loh JK; Tsai JT; Houg MF; Shi HY
    Chin J Cancer; 2017 Feb; 36(1):23. PubMed ID: 28241793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A machine learning-based approach to prognostic analysis of thoracic transplantations.
    Delen D; Oztekin A; Kong ZJ
    Artif Intell Med; 2010 May; 49(1):33-42. PubMed ID: 20153956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patient classification and outcome prediction in IgA nephropathy.
    Diciolla M; Binetti G; Di Noia T; Pesce F; Schena FP; Vågane AM; Bjørneklett R; Suzuki H; Tomino Y; Naso D
    Comput Biol Med; 2015 Nov; 66():278-86. PubMed ID: 26453758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear discriminant analysis and prognostic factor classification in node-negative primary breast cancer using probabilistic neural networks.
    Le Goff JM; Lavayssière L; Rouëssé J; Spyratos F
    Anticancer Res; 2000; 20(3B):2213-8. PubMed ID: 10928180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Knowledge mining from clinical datasets using rough sets and backpropagation neural network.
    Nahato KB; Harichandran KN; Arputharaj K
    Comput Math Methods Med; 2015; 2015():460189. PubMed ID: 25821508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a web-based liver cancer prediction model for type II diabetes patients by using an artificial neural network.
    Rau HH; Hsu CY; Lin YA; Atique S; Fuad A; Wei LM; Hsu MH
    Comput Methods Programs Biomed; 2016 Mar; 125():58-65. PubMed ID: 26701199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial neural networks help to identify disease subsets and to predict lymphoma in primary Sjögren's syndrome.
    Baldini C; Ferro F; Luciano N; Bombardieri S; Grossi E
    Clin Exp Rheumatol; 2018; 36 Suppl 112(3):137-144. PubMed ID: 30156549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of survival in thyroid cancer using data mining technique.
    Jajroudi M; Baniasadi T; Kamkar L; Arbabi F; Sanei M; Ahmadzade M
    Technol Cancer Res Treat; 2014 Aug; 13(4):353-9. PubMed ID: 24206207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting two-year quality of life after breast cancer surgery using artificial neural network and linear regression models.
    Shi HY; Tsai JT; Chen YM; Culbertson R; Chang HT; Hou MF
    Breast Cancer Res Treat; 2012 Aug; 135(1):221-9. PubMed ID: 22836876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.