These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 16160360)
21. DEEPEN: A negation detection system for clinical text incorporating dependency relation into NegEx. Mehrabi S; Krishnan A; Sohn S; Roch AM; Schmidt H; Kesterson J; Beesley C; Dexter P; Max Schmidt C; Liu H; Palakal M J Biomed Inform; 2015 Apr; 54():213-9. PubMed ID: 25791500 [TBL] [Abstract][Full Text] [Related]
22. An efficient pancreatic cyst identification methodology using natural language processing. Mehrabi S; Schmidt CM; Waters JA; Beesley C; Krishnan A; Kesterson J; Dexter P; Al-Haddad MA; Tierney WM; Palakal M Stud Health Technol Inform; 2013; 192():822-6. PubMed ID: 23920672 [TBL] [Abstract][Full Text] [Related]
23. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. Aronson AR Proc AMIA Symp; 2001; ():17-21. PubMed ID: 11825149 [TBL] [Abstract][Full Text] [Related]
24. A pilot study of a heuristic algorithm for novel template identification from VA electronic medical record text. Redd AM; Gundlapalli AV; Divita G; Carter ME; Tran LT; Samore MH J Biomed Inform; 2017 Jul; 71S():S68-S76. PubMed ID: 27497780 [TBL] [Abstract][Full Text] [Related]
25. Adaptation of the NegEx algorithm to Veterans Affairs electronic text notes for detection of influenza-like illness (ILI). South BR; Phansalkar S; Swaminathan AD; Delisle S; Perl T; Samore MH AMIA Annu Symp Proc; 2007 Oct; ():1118. PubMed ID: 18694215 [TBL] [Abstract][Full Text] [Related]
26. How useful is the UMLS metathesaurus in developing a controlled vocabulary for an automated problem list? Payne TH; Martin DR Proc Annu Symp Comput Appl Med Care; 1993; ():705-9. PubMed ID: 8130567 [TBL] [Abstract][Full Text] [Related]
27. ContextD: an algorithm to identify contextual properties of medical terms in a Dutch clinical corpus. Afzal Z; Pons E; Kang N; Sturkenboom MC; Schuemie MJ; Kors JA BMC Bioinformatics; 2014 Nov; 15(1):373. PubMed ID: 25432799 [TBL] [Abstract][Full Text] [Related]
28. Problem management module: an innovative system to improve problem list workflow. Hodge CM; Kuttler KG; Bowes WA; Narus SP AMIA Annu Symp Proc; 2014; 2014():661-70. PubMed ID: 25954372 [TBL] [Abstract][Full Text] [Related]
29. Improved identification of noun phrases in clinical radiology reports using a high-performance statistical natural language parser augmented with the UMLS specialist lexicon. Huang Y; Lowe HJ; Klein D; Cucina RJ J Am Med Inform Assoc; 2005; 12(3):275-85. PubMed ID: 15684131 [TBL] [Abstract][Full Text] [Related]
30. Development of a generalizable natural language processing pipeline to extract physician-reported pain from clinical reports: Generated using publicly-available datasets and tested on institutional clinical reports for cancer patients with bone metastases. Naseri H; Kafi K; Skamene S; Tolba M; Faye MD; Ramia P; Khriguian J; Kildea J J Biomed Inform; 2021 Aug; 120():103864. PubMed ID: 34265451 [TBL] [Abstract][Full Text] [Related]
31. Concept negation in free text components of vaccine safety reports. Tolentino H; Matters M; Walop W; Law B; Tong W; Liu F; Fontelo P; Kohl K; Payne D AMIA Annu Symp Proc; 2006; 2006():1122. PubMed ID: 17238741 [TBL] [Abstract][Full Text] [Related]
32. MetaMap Lite: an evaluation of a new Java implementation of MetaMap. Demner-Fushman D; Rogers WJ; Aronson AR J Am Med Inform Assoc; 2017 Jul; 24(4):841-844. PubMed ID: 28130331 [TBL] [Abstract][Full Text] [Related]
33. An early illness recognition framework using a temporal Smith Waterman algorithm and NLP. Hajihashemi Z; Popescu M AMIA Annu Symp Proc; 2013; 2013():548-57. PubMed ID: 24551357 [TBL] [Abstract][Full Text] [Related]
34. Comparison of MetaMap and cTAKES for entity extraction in clinical notes. Reátegui R; Ratté S BMC Med Inform Decis Mak; 2018 Sep; 18(Suppl 3):74. PubMed ID: 30255810 [TBL] [Abstract][Full Text] [Related]
35. Development and application of a high throughput natural language processing architecture to convert all clinical documents in a clinical data warehouse into standardized medical vocabularies. Afshar M; Dligach D; Sharma B; Cai X; Boyda J; Birch S; Valdez D; Zelisko S; Joyce C; Modave F; Price R J Am Med Inform Assoc; 2019 Nov; 26(11):1364-1369. PubMed ID: 31145455 [TBL] [Abstract][Full Text] [Related]
36. An interpretable natural language processing system for written medical examination assessment. Sarker A; Klein AZ; Mee J; Harik P; Gonzalez-Hernandez G J Biomed Inform; 2019 Oct; 98():103268. PubMed ID: 31421211 [TBL] [Abstract][Full Text] [Related]
37. An evaluation of UMLS as a controlled terminology for the Problem List Toolkit. Goldberg H; Goldsmith D; Law V; Keck K; Tuttle M; Safran C Stud Health Technol Inform; 1998; 52 Pt 1():609-12. PubMed ID: 10384527 [TBL] [Abstract][Full Text] [Related]
38. Automated problem list generation and physicians perspective from a pilot study. Devarakonda MV; Mehta N; Tsou CH; Liang JJ; Nowacki AS; Jelovsek JE Int J Med Inform; 2017 Sep; 105():121-129. PubMed ID: 28750905 [TBL] [Abstract][Full Text] [Related]
39. Using NLP to extract concepts from chief complaints. Lieberman MI; Ricciardi TN AMIA Annu Symp Proc; 2005; 2005():1029. PubMed ID: 16779316 [TBL] [Abstract][Full Text] [Related]
40. Improving heart failure information extraction by domain adaptation. Kim Y; Garvin J; Heavirland J; Meystre SM Stud Health Technol Inform; 2013; 192():185-9. PubMed ID: 23920541 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]