BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 16160778)

  • 1. Efficiency of modified H2S test for detection of faecal contamination in water.
    Pathak SP; Gopal K
    Environ Monit Assess; 2005 Sep; 108(1-3):59-65. PubMed ID: 16160778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A field test for the assessment of faecal contamination of potable water.
    Jothikumar N; Rao KS
    J Environ Monit; 2000 Apr; 2(2):183-5. PubMed ID: 11253040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a simple screening test for the quality of drinking water systems.
    Kaspar P; Guillen I; Rivelli D; Meza T; Velazquez G; Miño de Kaspar H; Pozzoli L; Nuñez C; Zoulek G
    Trop Med Parasitol; 1992 Jun; 43(2):124-7. PubMed ID: 1519025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple field test for the detection of faecal pollution in drinking water.
    Manja KS; Maurya MS; Rao KM
    Bull World Health Organ; 1982; 60(5):797-801. PubMed ID: 6983930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Comparative studies of fresh and seawater for the determination of total coliform and fecal coliform bacteria according to the European Economic Community guideline 76/160 (bathing water) by the use of the most-probable-number method with BRILA-MUG broth and differentiation according to the drinking water ordinance].
    Havemeister G; Aleksic S; Bockemühl J; Heinemeyer EA; Müller HE; Von Pritzbuer E
    Zentralbl Hyg Umweltmed; 1991 May; 191(5-6):523-38. PubMed ID: 1883475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suitability of the H2S method for testing untreated and chlorinated water supplies.
    Nair J; Gibbs R; Mathew K; Ho GE
    Water Sci Technol; 2001; 44(6):119-26. PubMed ID: 11700650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Most probable number methodology for quantifying dilute concentrations and fluxes of Salmonella in surface waters.
    Jenkins MB; Endale DM; Fisher DS
    J Appl Microbiol; 2008 Jun; 104(6):1562-8. PubMed ID: 18179540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of faecal coliform bacteria from the American alligator (Alligator mississippiensis).
    Johnston MA; Porter DE; Scott GI; Rhodes WE; Webster LF
    J Appl Microbiol; 2010 Mar; 108(3):965-973. PubMed ID: 19735329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evaluation of the hydrogen sulphide water screening test and coliform counts for water quality assessment in rural Malaysia.
    Desmarchelier P; Lew A; Caique W; Knight S; Toodayan W; Isa AR; Barnes A
    Trans R Soc Trop Med Hyg; 1992; 86(4):448-50. PubMed ID: 1440833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of four membrane filter media in anaerobic-MF recovery of faecal coliforms from freshwater in Nigeria.
    Ogan MT
    J Appl Bacteriol; 1992 Aug; 73(2):168-74. PubMed ID: 1399909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a quantitative H2S MPN test for fecal microbes analysis of water using biochemical and molecular identification.
    McMahan L; Grunden AM; Devine AA; Sobsey MD
    Water Res; 2012 Apr; 46(6):1693-704. PubMed ID: 22244995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The H(2)S test versus standard indicator bacteria tests for faecal contamination of water: systematic review and meta-analysis.
    Wright JA; Yang H; Walker K; Pedley S; Elliott J; Gundry SW
    Trop Med Int Health; 2012 Jan; 17(1):94-105. PubMed ID: 21951335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors affecting microbial and physico-chemical pollutants in stormwater in a typical Chinese urban catchment.
    Hou X; Chen L; Wei G; Gong Y; Shen Z
    Environ Sci Process Impacts; 2018 Dec; 20(12):1697-1707. PubMed ID: 30288511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coliform dynamics and the implications for source tracking.
    Barnes B; Gordon DM
    Environ Microbiol; 2004 May; 6(5):501-9. PubMed ID: 15049923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationships between salmonellas and faecal indicator concentrations in two pools in the Australian wet/dry tropics.
    Townsend SA
    J Appl Bacteriol; 1992 Aug; 73(2):182-8. PubMed ID: 1399911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enumeration of Escherichia coli and coliforms in surface water by multiple tube fermentation and membrane filter methods.
    Grasso GM; Sammarco ML; Ripabelli G; Fanelli I
    Microbios; 2000; 103(405):119-25. PubMed ID: 11092193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen sulphide production tests and the detection of groundwater faecal contamination by septic seepage.
    Roser DJ; Ashbolt N; Ho G; Mathew K; Nair J; Ryken-Rapp D; Toze S
    Water Sci Technol; 2005; 51(10):291-300. PubMed ID: 16104433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence and densities of bacteriophages proposed as indicators and bacterial indicators in river waters from Europe and South America.
    Lucena F; Méndez X; Morón A; Calderón E; Campos C; Guerrero A; Cárdenas M; Gantzer C; Shwartzbrood L; Skraber S; Jofre J
    J Appl Microbiol; 2003; 94(5):808-15. PubMed ID: 12694445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil: the environmental source of Escherichia coli and Enterococci in Guam's streams.
    Fujioka R; Sian-Denton C; Borja M; Castro J; Morphew K
    J Appl Microbiol; 1998 Dec; 85 Suppl 1():83S-89S. PubMed ID: 21182696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coliform species recovered from untreated surface water and drinking water by the membrane filter, standard, and modified most-probable-number techniques.
    Evans TM; LeChevallier MW; Waarvick CE; Seidler RJ
    Appl Environ Microbiol; 1981 Mar; 41(3):657-63. PubMed ID: 7013706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.