These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 16160778)
1. Efficiency of modified H2S test for detection of faecal contamination in water. Pathak SP; Gopal K Environ Monit Assess; 2005 Sep; 108(1-3):59-65. PubMed ID: 16160778 [TBL] [Abstract][Full Text] [Related]
2. A field test for the assessment of faecal contamination of potable water. Jothikumar N; Rao KS J Environ Monit; 2000 Apr; 2(2):183-5. PubMed ID: 11253040 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of a simple screening test for the quality of drinking water systems. Kaspar P; Guillen I; Rivelli D; Meza T; Velazquez G; Miño de Kaspar H; Pozzoli L; Nuñez C; Zoulek G Trop Med Parasitol; 1992 Jun; 43(2):124-7. PubMed ID: 1519025 [TBL] [Abstract][Full Text] [Related]
4. A simple field test for the detection of faecal pollution in drinking water. Manja KS; Maurya MS; Rao KM Bull World Health Organ; 1982; 60(5):797-801. PubMed ID: 6983930 [TBL] [Abstract][Full Text] [Related]
5. [Comparative studies of fresh and seawater for the determination of total coliform and fecal coliform bacteria according to the European Economic Community guideline 76/160 (bathing water) by the use of the most-probable-number method with BRILA-MUG broth and differentiation according to the drinking water ordinance]. Havemeister G; Aleksic S; Bockemühl J; Heinemeyer EA; Müller HE; Von Pritzbuer E Zentralbl Hyg Umweltmed; 1991 May; 191(5-6):523-38. PubMed ID: 1883475 [TBL] [Abstract][Full Text] [Related]
6. Suitability of the H2S method for testing untreated and chlorinated water supplies. Nair J; Gibbs R; Mathew K; Ho GE Water Sci Technol; 2001; 44(6):119-26. PubMed ID: 11700650 [TBL] [Abstract][Full Text] [Related]
7. Most probable number methodology for quantifying dilute concentrations and fluxes of Salmonella in surface waters. Jenkins MB; Endale DM; Fisher DS J Appl Microbiol; 2008 Jun; 104(6):1562-8. PubMed ID: 18179540 [TBL] [Abstract][Full Text] [Related]
8. Isolation of faecal coliform bacteria from the American alligator (Alligator mississippiensis). Johnston MA; Porter DE; Scott GI; Rhodes WE; Webster LF J Appl Microbiol; 2010 Mar; 108(3):965-973. PubMed ID: 19735329 [TBL] [Abstract][Full Text] [Related]
9. An evaluation of the hydrogen sulphide water screening test and coliform counts for water quality assessment in rural Malaysia. Desmarchelier P; Lew A; Caique W; Knight S; Toodayan W; Isa AR; Barnes A Trans R Soc Trop Med Hyg; 1992; 86(4):448-50. PubMed ID: 1440833 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of four membrane filter media in anaerobic-MF recovery of faecal coliforms from freshwater in Nigeria. Ogan MT J Appl Bacteriol; 1992 Aug; 73(2):168-74. PubMed ID: 1399909 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of a quantitative H2S MPN test for fecal microbes analysis of water using biochemical and molecular identification. McMahan L; Grunden AM; Devine AA; Sobsey MD Water Res; 2012 Apr; 46(6):1693-704. PubMed ID: 22244995 [TBL] [Abstract][Full Text] [Related]
12. The H(2)S test versus standard indicator bacteria tests for faecal contamination of water: systematic review and meta-analysis. Wright JA; Yang H; Walker K; Pedley S; Elliott J; Gundry SW Trop Med Int Health; 2012 Jan; 17(1):94-105. PubMed ID: 21951335 [TBL] [Abstract][Full Text] [Related]
13. Factors affecting microbial and physico-chemical pollutants in stormwater in a typical Chinese urban catchment. Hou X; Chen L; Wei G; Gong Y; Shen Z Environ Sci Process Impacts; 2018 Dec; 20(12):1697-1707. PubMed ID: 30288511 [TBL] [Abstract][Full Text] [Related]
14. Coliform dynamics and the implications for source tracking. Barnes B; Gordon DM Environ Microbiol; 2004 May; 6(5):501-9. PubMed ID: 15049923 [TBL] [Abstract][Full Text] [Related]
15. The relationships between salmonellas and faecal indicator concentrations in two pools in the Australian wet/dry tropics. Townsend SA J Appl Bacteriol; 1992 Aug; 73(2):182-8. PubMed ID: 1399911 [TBL] [Abstract][Full Text] [Related]
16. Enumeration of Escherichia coli and coliforms in surface water by multiple tube fermentation and membrane filter methods. Grasso GM; Sammarco ML; Ripabelli G; Fanelli I Microbios; 2000; 103(405):119-25. PubMed ID: 11092193 [TBL] [Abstract][Full Text] [Related]
17. Hydrogen sulphide production tests and the detection of groundwater faecal contamination by septic seepage. Roser DJ; Ashbolt N; Ho G; Mathew K; Nair J; Ryken-Rapp D; Toze S Water Sci Technol; 2005; 51(10):291-300. PubMed ID: 16104433 [TBL] [Abstract][Full Text] [Related]
18. Occurrence and densities of bacteriophages proposed as indicators and bacterial indicators in river waters from Europe and South America. Lucena F; Méndez X; Morón A; Calderón E; Campos C; Guerrero A; Cárdenas M; Gantzer C; Shwartzbrood L; Skraber S; Jofre J J Appl Microbiol; 2003; 94(5):808-15. PubMed ID: 12694445 [TBL] [Abstract][Full Text] [Related]
19. Soil: the environmental source of Escherichia coli and Enterococci in Guam's streams. Fujioka R; Sian-Denton C; Borja M; Castro J; Morphew K J Appl Microbiol; 1998 Dec; 85 Suppl 1():83S-89S. PubMed ID: 21182696 [TBL] [Abstract][Full Text] [Related]
20. Coliform species recovered from untreated surface water and drinking water by the membrane filter, standard, and modified most-probable-number techniques. Evans TM; LeChevallier MW; Waarvick CE; Seidler RJ Appl Environ Microbiol; 1981 Mar; 41(3):657-63. PubMed ID: 7013706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]