These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 16160839)
1. Indigenous microbes and their soluble factors differentially modulate intestinal glycosylation steps in vivo. Use of a "lectin assay" to survey in vivo glycosylation changes. Freitas M; Axelsson LG; Cayuela C; Midtvedt T; Trugnan G Histochem Cell Biol; 2005 Nov; 124(5):423-33. PubMed ID: 16160839 [TBL] [Abstract][Full Text] [Related]
2. Microbial-host interactions specifically control the glycosylation pattern in intestinal mouse mucosa. Freitas M; Axelsson LG; Cayuela C; Midtvedt T; Trugnan G Histochem Cell Biol; 2002 Aug; 118(2):149-61. PubMed ID: 12189518 [TBL] [Abstract][Full Text] [Related]
3. A model of host-microbial interactions in an open mammalian ecosystem. Bry L; Falk PG; Midtvedt T; Gordon JI Science; 1996 Sep; 273(5280):1380-3. PubMed ID: 8703071 [TBL] [Abstract][Full Text] [Related]
4. IgA production in the large intestine is modulated by a different mechanism than in the small intestine: Bacteroides acidifaciens promotes IgA production in the large intestine by inducing germinal center formation and increasing the number of IgA+ B cells. Yanagibashi T; Hosono A; Oyama A; Tsuda M; Suzuki A; Hachimura S; Takahashi Y; Momose Y; Itoh K; Hirayama K; Takahashi K; Kaminogawa S Immunobiology; 2013 Apr; 218(4):645-51. PubMed ID: 22940255 [TBL] [Abstract][Full Text] [Related]
5. A heat labile soluble factor from Bacteroides thetaiotaomicron VPI-5482 specifically increases the galactosylation pattern of HT29-MTX cells. Freitas M; Cayuela C; Antoine JM; Piller F; Sapin C; Trugnan G Cell Microbiol; 2001 May; 3(5):289-300. PubMed ID: 11298652 [TBL] [Abstract][Full Text] [Related]
6. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. Wrzosek L; Miquel S; Noordine ML; Bouet S; Joncquel Chevalier-Curt M; Robert V; Philippe C; Bridonneau C; Cherbuy C; Robbe-Masselot C; Langella P; Thomas M BMC Biol; 2013 May; 11():61. PubMed ID: 23692866 [TBL] [Abstract][Full Text] [Related]
7. Molecular analysis of commensal host-microbial relationships in the intestine. Hooper LV; Wong MH; Thelin A; Hansson L; Falk PG; Gordon JI Science; 2001 Feb; 291(5505):881-4. PubMed ID: 11157169 [TBL] [Abstract][Full Text] [Related]
8. Interactions between epithelial cells and bacteria, normal and pathogenic. Umesaki Y; Okada Y; Imaoka A; Setoyama H; Matsumoto S Science; 1997 May; 276(5314):964-5. PubMed ID: 9139662 [No Abstract] [Full Text] [Related]
9. Bacteroides thetaiotaomicron in the gut: molecular aspects of their interaction. Zocco MA; Ainora ME; Gasbarrini G; Gasbarrini A Dig Liver Dis; 2007 Aug; 39(8):707-12. PubMed ID: 17602905 [TBL] [Abstract][Full Text] [Related]
10. Analyzing the molecular foundations of commensalism in the mouse intestine. Hooper LV; Falk PG; Gordon JI Curr Opin Microbiol; 2000 Feb; 3(1):79-85. PubMed ID: 10679416 [TBL] [Abstract][Full Text] [Related]
11. The influence of diets and gut microflora on lectin binding patterns of intestinal mucins in rats. Sharma R; Schumacher U Lab Invest; 1995 Oct; 73(4):558-64. PubMed ID: 7474928 [TBL] [Abstract][Full Text] [Related]
12. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Stappenbeck TS; Hooper LV; Gordon JI Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15451-5. PubMed ID: 12432102 [TBL] [Abstract][Full Text] [Related]
13. Lectins and also bacteria modify the glycosylation of gut surface receptors in the rat. Pusztai A; Ewen SW; Grant G; Peumans WJ; Van Damme EJ; Coates ME; Bardocz S Glycoconj J; 1995 Feb; 12(1):22-35. PubMed ID: 7795410 [TBL] [Abstract][Full Text] [Related]
14. Glycoconjugate expression defines the origin and differentiation pathway of intestinal M-cells. Gebert A; Posselt W J Histochem Cytochem; 1997 Oct; 45(10):1341-50. PubMed ID: 9313796 [TBL] [Abstract][Full Text] [Related]
15. Gut microbial colonization orchestrates TLR2 expression, signaling and epithelial proliferation in the small intestinal mucosa. Hörmann N; Brandão I; Jäckel S; Ens N; Lillich M; Walter U; Reinhardt C PLoS One; 2014; 9(11):e113080. PubMed ID: 25396415 [TBL] [Abstract][Full Text] [Related]
16. gamma-Aminobutyric acid production in small and large intestine of normal and germ-free Wistar rats. Influence of food intake and intestinal flora. van Berlo CL; de Jonge HR; van den Bogaard AE; van Eijk HM; Janssen MA; Soeters PB Gastroenterology; 1987 Sep; 93(3):472-9. PubMed ID: 3609657 [TBL] [Abstract][Full Text] [Related]
17. Inactivation of tryptic activity by a human-derived strain of Bacteroides distasonis in the large intestines of gnotobiotic rats and mice. Ramare F; Hautefort I; Verhe F; Raibaud P; Iovanna J Appl Environ Microbiol; 1996 Apr; 62(4):1434-6. PubMed ID: 8919807 [TBL] [Abstract][Full Text] [Related]
18. Heterogeneity across the murine small and large intestine. Bowcutt R; Forman R; Glymenaki M; Carding SR; Else KJ; Cruickshank SM World J Gastroenterol; 2014 Nov; 20(41):15216-32. PubMed ID: 25386070 [TBL] [Abstract][Full Text] [Related]
19. The Effects of Alcohol Intoxication and Burn Injury on the Expression of Claudins and Mucins in the Small and Large Intestines. Hammer AM; Khan OM; Morris NL; Li X; Movtchan NV; Cannon AR; Choudhry MA Shock; 2016 Jan; 45(1):73-81. PubMed ID: 26368926 [TBL] [Abstract][Full Text] [Related]
20. Antibiotics conspicuously affect community profiles and richness, but not the density of bacterial cells associated with mucosa in the large and small intestines of mice. Puhl NJ; Uwiera RR; Yanke LJ; Selinger LB; Inglis GD Anaerobe; 2012 Feb; 18(1):67-75. PubMed ID: 22185696 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]