BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 16160849)

  • 1. Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp.
    Mantelin S; Desbrosses G; Larcher M; Tranbarger TJ; Cleyet-Marel JC; Touraine B
    Planta; 2006 Feb; 223(3):591-603. PubMed ID: 16160849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The NRT2.5 and NRT2.6 genes are involved in growth promotion of Arabidopsis by the plant growth-promoting rhizobacterium (PGPR) strain Phyllobacterium brassicacearum STM196.
    Kechid M; Desbrosses G; Rokhsi W; Varoquaux F; Djekoun A; Touraine B
    New Phytol; 2013 Apr; 198(2):514-524. PubMed ID: 23398541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual regulation of root hydraulic conductivity and plasma membrane aquaporins by plant nitrate accumulation and high-affinity nitrate transporter NRT2.1.
    Li G; Tillard P; Gojon A; Maurel C
    Plant Cell Physiol; 2016 Apr; 57(4):733-42. PubMed ID: 26823528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 150 kDa plasma membrane complex of AtNRT2.5 and AtNAR2.1 is the major contributor to constitutive high-affinity nitrate influx in Arabidopsis thaliana.
    Kotur Z; Glass AD
    Plant Cell Environ; 2015 Aug; 38(8):1490-502. PubMed ID: 25474587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrate-Dependent Control of Shoot K Homeostasis by the Nitrate Transporter1/Peptide Transporter Family Member NPF7.3/NRT1.5 and the Stelar K+ Outward Rectifier SKOR in Arabidopsis.
    Drechsler N; Zheng Y; Bohner A; Nobmann B; von Wirén N; Kunze R; Rausch C
    Plant Physiol; 2015 Dec; 169(4):2832-47. PubMed ID: 26508776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of the nitrate transporter genes AtNRT2.1 and AtNRT2.2 restricts growth at low external nitrate concentration.
    Orsel M; Eulenburg K; Krapp A; Daniel-Vedele F
    Planta; 2004 Aug; 219(4):714-21. PubMed ID: 15107992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression of the NO3- transporter NRT1.1 and the nitrate reductase NIA1 is repressed in Arabidopsis roots by NO2-, the product of NO3- reduction.
    Loqué D; Tillard P; Gojon A; Lepetit M
    Plant Physiol; 2003 Jun; 132(2):958-67. PubMed ID: 12805624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential regulation of the NO3- and NH4+ transporter genes AtNrt2.1 and AtAmt1.1 in Arabidopsis: relation with long-distance and local controls by N status of the plant.
    Gansel X; Muños S; Tillard P; Gojon A
    Plant J; 2001 Apr; 26(2):143-55. PubMed ID: 11389756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster.
    Li W; Wang Y; Okamoto M; Crawford NM; Siddiqi MY; Glass AD
    Plant Physiol; 2007 Jan; 143(1):425-33. PubMed ID: 17085507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the high-affinity NO3- uptake system by NRT1.1-mediated NO3- demand signaling in Arabidopsis.
    Krouk G; Tillard P; Gojon A
    Plant Physiol; 2006 Nov; 142(3):1075-86. PubMed ID: 16998085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) is regulated by auxin in both shoots and roots.
    Guo FQ; Wang R; Crawford NM
    J Exp Bot; 2002 Apr; 53(370):835-44. PubMed ID: 11912226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Arabidopsis nitrate transporter NPF7.3/NRT1.5 is involved in lateral root development under potassium deprivation.
    Zheng Y; Drechsler N; Rausch C; Kunze R
    Plant Signal Behav; 2016 May; 11(5):e1176819. PubMed ID: 27089248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole-plant and organ-level nitrogen isotope discrimination indicates modification of partitioning of assimilation, fluxes and allocation of nitrogen in knockout lines of Arabidopsis thaliana.
    Kalcsits LA; Guy RD
    Physiol Plant; 2013 Oct; 149(2):249-59. PubMed ID: 23414092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal interactions in the regulation of root nitrate uptake.
    Ruffel S; Gojon A; Lejay L
    J Exp Bot; 2014 Oct; 65(19):5509-17. PubMed ID: 25165146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethylene is involved in nitrate-dependent root growth and branching in Arabidopsis thaliana.
    Tian QY; Sun P; Zhang WH
    New Phytol; 2009 Dec; 184(4):918-31. PubMed ID: 19732351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen Use Efficiency Is Mediated by Vacuolar Nitrate Sequestration Capacity in Roots of Brassica napus.
    Han YL; Song HX; Liao Q; Yu Y; Jian SF; Lepo JE; Liu Q; Rong XM; Tian C; Zeng J; Guan CY; Ismail AM; Zhang ZH
    Plant Physiol; 2016 Mar; 170(3):1684-98. PubMed ID: 26757990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Major alterations of the regulation of root NO(3)(-) uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis.
    Cerezo M; Tillard P; Filleur S; Muños S; Daniel-Vedele F; Gojon A
    Plant Physiol; 2001 Sep; 127(1):262-71. PubMed ID: 11553754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miR444a has multiple functions in the rice nitrate-signaling pathway.
    Yan Y; Wang H; Hamera S; Chen X; Fang R
    Plant J; 2014 Apr; 78(1):44-55. PubMed ID: 24460537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana.
    Gan Y; Filleur S; Rahman A; Gotensparre S; Forde BG
    Planta; 2005 Nov; 222(4):730-42. PubMed ID: 16021502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MADS-box transcription factor OsMADS25 regulates root development through affection of nitrate accumulation in rice.
    Yu C; Liu Y; Zhang A; Su S; Yan A; Huang L; Ali I; Liu Y; Forde BG; Gan Y
    PLoS One; 2015; 10(8):e0135196. PubMed ID: 26258667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.