These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 16161071)
1. Evaluation of toxicity of capsaicin and zosteric acid and their potential application as antifoulants. Xu Q; Barrios CA; Cutright T; Zhang Newby BM Environ Toxicol; 2005 Oct; 20(5):467-74. PubMed ID: 16161071 [TBL] [Abstract][Full Text] [Related]
2. Assessment of antifouling effectiveness of two natural product antifoulants by attachment study with freshwater bacteria. Xu Q; Barrios CA; Cutright T; Newby BM Environ Sci Pollut Res Int; 2005 Sep; 12(5):278-84. PubMed ID: 16206721 [TBL] [Abstract][Full Text] [Related]
3. Incorporating zosteric acid into silicone coatings to achieve its slow release while reducing fresh water bacterial attachment. Barrios CA; Xu Q; Cutright T; Newby BM Colloids Surf B Biointerfaces; 2005 Mar; 41(2-3):83-93. PubMed ID: 15737532 [TBL] [Abstract][Full Text] [Related]
4. Hindering biofilm formation with zosteric acid. Villa F; Albanese D; Giussani B; Stewart PS; Daffonchio D; Cappitelli F Biofouling; 2010 Aug; 26(6):739-52. PubMed ID: 20711895 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of zosteric acid for mitigating biofilm formation of Pseudomonas putida isolated from a membrane bioreactor system. Polo A; Foladori P; Ponti B; Bettinetti R; Gambino M; Villa F; Cappitelli F Int J Mol Sci; 2014 May; 15(6):9497-518. PubMed ID: 24879523 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of the natural product antifoulant, zosteric acid, for preventing the attachment of quagga mussels--a preliminary study. Ram JL; Purohit S; Newby BM; Cutright TJ Nat Prod Res; 2012; 26(6):580-4. PubMed ID: 21861646 [TBL] [Abstract][Full Text] [Related]
7. Effectiveness of sodium benzoate as a freshwater low toxicity antifoulant when dispersed in solution and entrapped in silicone coatings. Haque H; Cutright TJ; Newby BM Biofouling; 2005; 21(2):109-19. PubMed ID: 16109600 [TBL] [Abstract][Full Text] [Related]
8. Antifouling activity of commercial biocides vs. natural and natural-derived products assessed by marine bacteria adhesion bioassay. Camps M; Briand JF; Guentas-Dombrowsky L; Culioli G; Bazire A; Blache Y Mar Pollut Bull; 2011 May; 62(5):1032-40. PubMed ID: 21414639 [TBL] [Abstract][Full Text] [Related]
9. A marine bacterial adhesion microplate test using the DAPI fluorescent dye: a new method to screen antifouling agents. Leroy C; Delbarre-Ladrat C; Ghillebaert F; Rochet MJ; Compère C; Combes D Lett Appl Microbiol; 2007 Apr; 44(4):372-8. PubMed ID: 17397474 [TBL] [Abstract][Full Text] [Related]
10. Final report on the safety assessment of capsicum annuum extract, capsicum annuum fruit extract, capsicum annuum resin, capsicum annuum fruit powder, capsicum frutescens fruit, capsicum frutescens fruit extract, capsicum frutescens resin, and capsaicin. Int J Toxicol; 2007; 26 Suppl 1():3-106. PubMed ID: 17365137 [TBL] [Abstract][Full Text] [Related]
11. Sulfation mediates activity of zosteric acid against biofilm formation. Kurth C; Cavas L; Pohnert G Biofouling; 2015; 31(3):253-63. PubMed ID: 25915112 [TBL] [Abstract][Full Text] [Related]
12. Assessment of toxicity of a glyphosate-based formulation using bacterial systems in lake water. Amorós I; Alonso JL; Romaguera S; Carrasco JM Chemosphere; 2007 May; 67(11):2221-8. PubMed ID: 17270238 [TBL] [Abstract][Full Text] [Related]
13. Efficacy of zosteric acid sodium salt on the yeast biofilm model Candida albicans. Villa F; Pitts B; Stewart PS; Giussani B; Roncoroni S; Albanese D; Giordano C; Tunesi M; Cappitelli F Microb Ecol; 2011 Oct; 62(3):584-98. PubMed ID: 21614460 [TBL] [Abstract][Full Text] [Related]
14. An antifouling model from the sea: a review of 25 years of zosteric acid studies. Vilas-Boas C; Sousa E; Pinto M; Correia-da-Silva M Biofouling; 2017 Nov; 33(10):927-942. PubMed ID: 29171304 [TBL] [Abstract][Full Text] [Related]
15. Interactions of silver nanoparticles with Pseudomonas putida biofilms. Fabrega J; Renshaw JC; Lead JR Environ Sci Technol; 2009 Dec; 43(23):9004-9. PubMed ID: 19943680 [TBL] [Abstract][Full Text] [Related]
16. Two type IV pili of Vibrio parahaemolyticus play different roles in biofilm formation. Shime-Hattori A; Iida T; Arita M; Park KS; Kodama T; Honda T FEMS Microbiol Lett; 2006 Nov; 264(1):89-97. PubMed ID: 17020553 [TBL] [Abstract][Full Text] [Related]
17. Exploration of structure-antifouling relationships of capsaicin-like compounds that inhibit zebra mussel (Dreissena polymorpha) macrofouling. Angarano MB; McMahon RF; Hawkins DL; Schetz JA Biofouling; 2007; 23(5-6):295-305. PubMed ID: 17852065 [TBL] [Abstract][Full Text] [Related]
18. Minimum effective release rate of antifoulants (2): Measurement of the effect of TBT and zosteric acid on hard fouling. Haslbeck EG; Kavanagh CJ; Shin HW; Banta WC; Song P; Loeb GI Biofouling; 1996; 10(1-3):175-86. PubMed ID: 22115110 [TBL] [Abstract][Full Text] [Related]
19. Pyrithiones as antifoulants: environmental fate and loss of toxicity. Turley PA; Fenn RJ; Ritter JC; Callow ME Biofouling; 2005; 21(1):31-40. PubMed ID: 16019389 [TBL] [Abstract][Full Text] [Related]
20. Construction of biofilms with defined internal architecture using dielectrophoresis and flocculation. Verduzco-Luque CE; Alp B; Stephens GM; Markx GH Biotechnol Bioeng; 2003 Jul; 83(1):39-44. PubMed ID: 12740931 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]