These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 1616131)

  • 1. Homogeneous mechanism of ascorbic acid interference in hydrogen peroxide detection at enzyme-modified electrodes.
    Lowry JP; O'Neill RD
    Anal Chem; 1992 Feb; 64(4):453-6. PubMed ID: 1616131
    [No Abstract]   [Full Text] [Related]  

  • 2. Evaluation of a silver-based electrocatalyst for the determination of hydrogen peroxide formed via enzymatic oxidation.
    Gonzalez-Macia L; Smyth MR; Killard AJ
    Talanta; 2012 Sep; 99():989-96. PubMed ID: 22967653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new modified conducting carbon composite electrode as sensor for ascorbate and biosensor for glucose.
    Barsan MM; Brett CM
    Bioelectrochemistry; 2009 Sep; 76(1-2):135-40. PubMed ID: 19349215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunoaffinity layering of enzymes. Stabilization and use in flow injection analysis of glucose and hydrogen peroxide.
    Farooqi M; Sosnitza P; Saleemuddin M; Ulber R; Scheper T
    Appl Microbiol Biotechnol; 1999 Sep; 52(3):373-9. PubMed ID: 10531650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A glucose oxidase inmobilized electrode based on modified graphite.
    Dimcheva N; Horozova E; Jordanova Z
    Z Naturforsch C J Biosci; 2002; 57(7-8):705-11. PubMed ID: 12241000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time detection of L-ascorbic acid and hydrogen peroxide in crude food samples employing a reversed sequential differential measuring technique of the SIRE-technology based biosensor.
    Kriz K; Anderlund M; Kriz D
    Biosens Bioelectron; 2001 Aug; 16(6):363-9. PubMed ID: 11672650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Platinum-catalyzed enzyme electrodes immobilized on gold using self-assembled layers.
    Gooding JJ; Praig VG; Hall EA
    Anal Chem; 1998 Jun; 70(11):2396-402. PubMed ID: 9624910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the detection of hydrogen peroxide of screen-printed carbon paste electrodes by modifying with nonionic surfactants.
    Yuan CJ; Wang YC; Reiko O
    Anal Chim Acta; 2009 Oct; 653(1):71-6. PubMed ID: 19800476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Horseradish peroxidase-catalyzed synthesis of poly(thiophene-3-boronic acid) biocomposites for mono-/bi-enzyme immobilization and amperometric biosensing.
    Huang Y; Wang W; Li Z; Qin X; Bu L; Tang Z; Fu Y; Ma M; Xie Q; Yao S; Hu J
    Biosens Bioelectron; 2013 Jun; 44():41-7. PubMed ID: 23391705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the redox and enzymatic activity of glucose oxidase in layered organic films and its application in glucose biosensors.
    Zhang W; Huang Y; Dai H; Wang X; Fan C; Li G
    Anal Biochem; 2004 Jun; 329(1):85-90. PubMed ID: 15136170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Native glucose oxidase does not undergo direct electron transfer.
    Wilson GS
    Biosens Bioelectron; 2016 Aug; 82():vii-viii. PubMed ID: 27137704
    [No Abstract]   [Full Text] [Related]  

  • 12. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes.
    Hrapovic S; Liu Y; Male KB; Luong JH
    Anal Chem; 2004 Feb; 76(4):1083-8. PubMed ID: 14961742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An oxidase-based electrochemical fluidic sensor with high-sensitivity and low-interference by on-chip oxygen manipulation.
    Radhakrishnan N; Park J; Kim CS
    Sensors (Basel); 2012; 12(7):8955-65. PubMed ID: 23012527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controllable growth of Prussian blue nanostructures on carboxylic group-functionalized carbon nanofibers and its application for glucose biosensing.
    Wang L; Ye Y; Zhu H; Song Y; He S; Xu F; Hou H
    Nanotechnology; 2012 Nov; 23(45):455502. PubMed ID: 23090569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel hexacyanoferrate (III)-modified carbon electrodes: application in miniaturized biosensors with potential for in vivo glucose sensing.
    Jaffari SA; Pickup JC
    Biosens Bioelectron; 1996; 11(11):1167-75. PubMed ID: 8828167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scanning electrochemical microscopy. 24. Enzyme ultramicroelectrodes for the measurement of hydrogen peroxide at surfaces.
    Horrocks BR; Schmidtke D; Heller A; Bard AJ
    Anal Chem; 1993 Dec; 65(24):3605-14. PubMed ID: 8311247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Layer-by-Layer Assembly of Glucose Oxidase on Carbon Nanotube Modified Electrodes.
    Suroviec AH
    Methods Mol Biol; 2017; 1504():203-213. PubMed ID: 27770424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A gold@silica core-shell nanoparticle-based surface-enhanced Raman scattering biosensor for label-free glucose detection.
    Al-Ogaidi I; Gou H; Al-Kazaz AK; Aguilar ZP; Melconian AK; Zheng P; Wu N
    Anal Chim Acta; 2014 Feb; 811():76-80. PubMed ID: 24456597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mediated electron transfer of cellobiose dehydrogenase and glucose oxidase at osmium polymer-modified nanoporous gold electrodes.
    Salaj-Kosla U; Scanlon MD; Baumeister T; Zahma K; Ludwig R; Ó Conghaile P; MacAodha D; Leech D; Magner E
    Anal Bioanal Chem; 2013 Apr; 405(11):3823-30. PubMed ID: 23274559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amperometric glucose biosensor based on electroconductive hydrogels.
    Kotanen CN; Tlili C; Guiseppi-Elie A
    Talanta; 2013 Jan; 103():228-35. PubMed ID: 23200382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.