These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16161570)

  • 1. Temperature and gas-phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy: the effect of condensation on the boundary-layer thickness.
    Tanimura S; Zvinevich Y; Wyslouzil BE; Zahniser M; Shorter J; Nelson D; McManus B
    J Chem Phys; 2005 May; 122(19):194304. PubMed ID: 16161570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy.
    Paci P; Zvinevich Y; Tanimura S; Wyslouzil BE; Zahniser M; Shorter J; Nelson D; McManus B
    J Chem Phys; 2004 Nov; 121(20):9964-70. PubMed ID: 15549871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CH(3)CH(2)OD/D(2)O binary condensation in a supersonic Laval nozzle: Presence of small clusters inferred from a macroscopic energy balance.
    Tanimura S; Wyslouzil BE; Wilemski G
    J Chem Phys; 2010 Apr; 132(14):144301. PubMed ID: 20405990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable diode laser absorption spectroscopy study of CH(3)CH(2)ODD(2)O binary condensation in a supersonic Laval nozzle.
    Tanimura S; Wyslouzil BE; Zahniser MS; Shorter JH; Nelson DD; McManus JB
    J Chem Phys; 2007 Jul; 127(3):034305. PubMed ID: 17655441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binary nucleation rates for ethanol/water mixtures in supersonic Laval nozzles.
    Tanimura S; Dieregsweiler UM; Wyslouzil BE
    J Chem Phys; 2010 Nov; 133(17):174305. PubMed ID: 21054030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal Boundary Layer Effects on Line-of-Sight Tunable Diode Laser Absorption Spectroscopy (TDLAS) Gas Concentration Measurements.
    Qu Z; Werhahn O; Ebert V
    Appl Spectrosc; 2018 Jun; 72(6):853-862. PubMed ID: 29264926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freezing of heavy water (D2O) nanodroplets.
    Bhabhe A; Pathak H; Wyslouzil BE
    J Phys Chem A; 2013 Jul; 117(26):5472-82. PubMed ID: 23763363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-condensation of nonane and D2O in a supersonic nozzle.
    Pathak H; Wölk J; Strey R; Wyslouzil BE
    J Chem Phys; 2014 Jan; 140(3):034304. PubMed ID: 25669376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cryogenic supersonic nozzle apparatus to study homogeneous nucleation of Ar and other simple molecules.
    Sinha S; Laksmono H; Wyslouzil BE
    Rev Sci Instrum; 2008 Nov; 79(11):114101. PubMed ID: 19045901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-scale study of condensation in water jets using ellipsoidal-statistical Bhatnagar-Gross-Krook and molecular dynamics modeling.
    Li Z; Borner A; Levin DA
    J Chem Phys; 2014 Jun; 140(22):224501. PubMed ID: 24929401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen nucleation in a cryogenic supersonic nozzle.
    Bhabhe A; Wyslouzil B
    J Chem Phys; 2011 Dec; 135(24):244311. PubMed ID: 22225160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of homogeneous condensation of small polyatomic systems in high pressure supersonic nozzle flows using Bhatnagar-Gross-Krook model.
    Kumar R; Levin DA
    J Chem Phys; 2011 Mar; 134(12):124519. PubMed ID: 21456688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An effective experimental method and apparatus for unsteady water vapor condensation investigation in high speed expansion flow.
    Peng D; Jin Y; Fan XD; Yang JM; Zhai C
    Rev Sci Instrum; 2019 Jun; 90(6):063101. PubMed ID: 31255013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Measurements of CO2 concentration at high temperature and pressure environments using tunable diode laser absorption spectroscopy].
    Cai TD; Gao GZ; Wang MR; Wang GS; Gao XM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jul; 34(7):1769-73. PubMed ID: 25269277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of gas backing pressure and geometry of conical nozzle on the formation of methane clusters in supersonic jets.
    Lu H; Chen G; Ni G; Li R; Xu Z
    J Phys Chem A; 2010 Jan; 114(1):2-9. PubMed ID: 19957980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infrared diode laser spectroscopy of the Ne-D2O van der Waals complex: strong Coriolis and angular-radial coupling.
    Li S; Zheng R; Zhu Y; Duan C
    J Chem Phys; 2011 Oct; 135(13):134304. PubMed ID: 21992302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Li/Li2 supersonic nozzle beam.
    Wu CY; Crooks JB; Yang SC; Way KR; Stwalley WC
    Rev Sci Instrum; 1978 Mar; 49(3):380. PubMed ID: 18699102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Measurement on gas temperature distribution by tunable diode laser absorption spectroscopy].
    Li N; Yan JH; Wang F; Chi Y; Cen KF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1708-12. PubMed ID: 18975785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of a downstream-mixing CO(2) gasdynamic laser caused by behavior of two supersonic flows in a laser cavity.
    Hashimoto T; Nakano S; Hachijin M; Komatsu K; Mine Y; Hara H
    Appl Opt; 1993 Oct; 32(30):5936-43. PubMed ID: 20856415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.