These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 16161594)

  • 1. Water's size-dependent freezing to cubic ice.
    Johari GP
    J Chem Phys; 2005 May; 122(19):194504. PubMed ID: 16161594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation and stability of cubic ice in water droplets.
    Murray BJ; Bertram AK
    Phys Chem Chem Phys; 2006 Jan; 8(1):186-92. PubMed ID: 16482260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is it cubic? Ice crystallization from deeply supercooled water.
    Moore EB; Molinero V
    Phys Chem Chem Phys; 2011 Nov; 13(44):20008-16. PubMed ID: 22009135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The formation of cubic ice under conditions relevant to Earth's atmosphere.
    Murray BJ; Knopf DA; Bertram AK
    Nature; 2005 Mar; 434(7030):202-5. PubMed ID: 15758996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures.
    Johnston JC; Molinero V
    J Am Chem Soc; 2012 Apr; 134(15):6650-9. PubMed ID: 22452637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freezing, melting and structure of ice in a hydrophilic nanopore.
    Moore EB; de la Llave E; Welke K; Scherlis DA; Molinero V
    Phys Chem Chem Phys; 2010 Apr; 12(16):4124-34. PubMed ID: 20379503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous Stability of Two-Dimensional Ice Confined in Hydrophobic Nanopores.
    Cao B; Xu E; Li T
    ACS Nano; 2019 Apr; 13(4):4712-4719. PubMed ID: 30892864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure-annealed high-density amorphous ice made from vitrified water droplets: A systematic calorimetry study on water's second glass transition.
    Bachler J; Giebelmann J; Amann-Winkel K; Loerting T
    J Chem Phys; 2022 Aug; 157(6):064502. PubMed ID: 35963736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ice crystallization in water's "no-man's land".
    Moore EB; Molinero V
    J Chem Phys; 2010 Jun; 132(24):244504. PubMed ID: 20590203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water's polyamorphic transitions and amorphization of ice under pressure.
    Johari GP; Andersson O
    J Chem Phys; 2004 Apr; 120(13):6207-13. PubMed ID: 15267507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of confined ice nano structures at different levels of pore filling: a synchrotron based X-ray diffraction study.
    Thangswamy M; Maheshwari P; Dutta D; Bera AK; Singh MN; Sinha AK; Yusuf SM; Pujari PK
    Phys Chem Chem Phys; 2020 Jul; 22(25):14309-14317. PubMed ID: 32567617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of stacking disorder in ice nucleation.
    Lupi L; Hudait A; Peters B; Grünwald M; Gotchy Mullen R; Nguyen AH; Molinero V
    Nature; 2017 Nov; 551(7679):218-222. PubMed ID: 29120424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of solute crystallisation in aqueous H(+)-NH(4)(+)-SO4(2-)-H2O droplets.
    Murray BJ; Bertram AK
    Phys Chem Chem Phys; 2008 Jun; 10(22):3287-301. PubMed ID: 18500406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Desorption-induced evolution of cubic and hexagonal ices in an ultrahigh vacuum and cryogenic temperatures.
    Vishwakarma G; Ghosh J; Pradeep T
    Phys Chem Chem Phys; 2021 Oct; 23(41):24052-24060. PubMed ID: 34665189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrational renormalisation of the electronic band gap in hexagonal and cubic ice.
    Engel EA; Monserrat B; Needs RJ
    J Chem Phys; 2015 Dec; 143(24):244708. PubMed ID: 26723703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing the secondary hydration shell on hydrated myoglobin, hemoglobin, and lysozyme powders by its vitrification behavior on cooling and its calorimetric glass-->liquid transition and crystallization behavior on reheating.
    Sartor G; Hallbrucker A; Mayer E
    Biophys J; 1995 Dec; 69(6):2679-94. PubMed ID: 8599674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous transformation of water's high-density amorph and a two-stage crystallization to ice VI at 1 GPa: a dielectric study.
    Andersson O; Johari GP
    J Chem Phys; 2004 Jun; 120(24):11662-71. PubMed ID: 15268201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton ordering in cubic ice and hexagonal ice; a potential new ice phase--XIc.
    Raza Z; Alfè D; Salzmann CG; Klimeš J; Michaelides A; Slater B
    Phys Chem Chem Phys; 2011 Nov; 13(44):19788-95. PubMed ID: 22009223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of the Metastable Ice Phase during Water Crystallization.
    Kondo K; Hara K; Keiichi O; Abe S; Kajiwara K
    Cryo Letters; 2020; 41(5):291-296. PubMed ID: 33988667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct calculation of ice homogeneous nucleation rate for a molecular model of water.
    Haji-Akbari A; Debenedetti PG
    Proc Natl Acad Sci U S A; 2015 Aug; 112(34):10582-8. PubMed ID: 26240318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.