These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 16162227)

  • 1. Atrazine degradation by encapsulated Rhodococcus erythropolis NI86/21.
    Vancov T; Jury K; Van Zwieten L
    J Appl Microbiol; 2005; 99(4):767-75. PubMed ID: 16162227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing cell survival of atrazine degrading Rhodococcus erythropolis NI86/21 cells encapsulated in alginate beads.
    Vancov T; Jury K; Rice N; Van Zwieten L; Morris S
    J Appl Microbiol; 2007 Jan; 102(1):212-20. PubMed ID: 17184337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single cytochrome P-450 system is involved in degradation of the herbicides EPTC (S-ethyl dipropylthiocarbamate) and atrazine by Rhodococcus sp. strain NI86/21.
    Nagy I; Compernolle F; Ghys K; Vanderleyden J; De Mot R
    Appl Environ Microbiol; 1995 May; 61(5):2056-60. PubMed ID: 7646049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of an atrazine-degrading Rhodococcus sp. strain MB-P1 from contaminated soil.
    Fazlurrahman ; Batra M; Pandey J; Suri CR; Jain RK
    Lett Appl Microbiol; 2009 Dec; 49(6):721-9. PubMed ID: 19818008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of atrazine in soil by Streptomyces.
    Fadullon FS; Karns JS; Torrents A
    J Environ Sci Health B; 1998 Jan; 33(1):37-49. PubMed ID: 9491568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laboratory assessment of atrazine and fluometuron degradation in soils from a constructed wetland.
    Weaver MA; Zablotowicz RM; Locke MA
    Chemosphere; 2004 Nov; 57(8):853-62. PubMed ID: 15488576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioavailability of organoclay formulations of atrazine in soil.
    Trigo C; Koskinen WC; Celis R; Sadowsky MJ; Hermosín MC; Cornejo J
    J Agric Food Chem; 2010 Nov; 58(22):11857-63. PubMed ID: 20964437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioremediation of atrazine-contaminated soil by forage grasses: transformation, uptake, and detoxification.
    Lin CH; Lerch RN; Garrett HE; George MF
    J Environ Qual; 2008; 37(1):196-206. PubMed ID: 18178893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Arthrobacter nicotinovorans HIM, an atrazine-degrading bacterium, from agricultural soil New Zealand.
    Aislabie J; Bej AK; Ryburn J; Lloyd N; Wilkins A
    FEMS Microbiol Ecol; 2005 Apr; 52(2):279-86. PubMed ID: 16329913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating a bioremediation tool for atrazine contaminated soils in open soil microcosms: the effectiveness of bioaugmentation and biostimulation approaches.
    Lima D; Viana P; André S; Chelinho S; Costa C; Ribeiro R; Sousa JP; Fialho AM; Viegas CA
    Chemosphere; 2009 Jan; 74(2):187-92. PubMed ID: 19004466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competitive biodegradation of dichlobenil and atrazine coexisting in soil amended with a char and citrate.
    Qiu Y; Pang H; Zhou Z; Zhang P; Feng Y; Sheng GD
    Environ Pollut; 2009 Nov; 157(11):2964-9. PubMed ID: 19564067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of atrazine by Rhodococcus sp. BCH2 to N-isopropylammelide with subsequent assessment of toxicity of biodegraded metabolites.
    Kolekar PD; Phugare SS; Jadhav JP
    Environ Sci Pollut Res Int; 2014 Feb; 21(3):2334-2345. PubMed ID: 24062064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The prospects of using bacteria of the genus Rhodococcus and microbial surfactants for the degradation of oil pollutants].
    Karpenko EV; Vil'danova-Martsishin RI; Shcheglova NS; Pirog TP; Voloshina IN
    Prikl Biokhim Mikrobiol; 2006; 42(2):175-9. PubMed ID: 16761570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enrichment and isolation of endosulfan degrading and detoxifying bacteria.
    Kumar K; Devi SS; Krishnamurthi K; Kanade GS; Chakrabarti T
    Chemosphere; 2007 Jun; 68(2):317-22. PubMed ID: 17289112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of aflatoxin B(1) by cell-free extracts of Rhodococcus erythropolis and Mycobacterium fluoranthenivorans sp. nov. DSM44556(T).
    Teniola OD; Addo PA; Brost IM; Färber P; Jany KD; Alberts JF; van Zyl WH; Steyn PS; Holzapfel WH
    Int J Food Microbiol; 2005 Nov; 105(2):111-7. PubMed ID: 16061299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the in situ degradation of atrazine in groundwater.
    Pearson R; Godley A; Cartmell E
    Pest Manag Sci; 2006 Apr; 62(4):299-306. PubMed ID: 16470679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid development of enhanced atrazine degradation in a Dundee silt loam soil under continuous corn and in rotation with cotton.
    Zablotowicz RM; Krutz LJ; Reddy KN; Weaver MA; Koger CH; Locke MA
    J Agric Food Chem; 2007 Feb; 55(3):852-9. PubMed ID: 17263485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of maize mucilage on atrazine mineralization and atzC abundance.
    López-Gutiérrez JC; Philippot L; Martin-Laurent F
    Pest Manag Sci; 2005 Sep; 61(9):838-44. PubMed ID: 15934036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microcosm study of atrazine bioremediation by indigenous microorganisms and cytotoxicity of biodegraded metabolites.
    Kolekar PD; Patil SM; Suryavanshi MV; Suryawanshi SS; Khandare RV; Govindwar SP; Jadhav JP
    J Hazard Mater; 2019 Jul; 374():66-73. PubMed ID: 30978632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Haloalkane hydrolysis by Rhodococcus erythropolis cells: comparison of conventional aqueous phase dehalogenation and nonconventional gas phase dehalogenation.
    Erable B; Goubet I; Lamare S; Legoy MD; Maugard T
    Biotechnol Bioeng; 2004 Apr; 86(1):47-54. PubMed ID: 15007840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.