These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 16162497)
1. Biochemical coupling of the two nucleotide binding domains of ClpB: covalent linkage is not a prerequisite for chaperone activity. Beinker P; Schlee S; Auvula R; Reinstein J J Biol Chem; 2005 Nov; 280(45):37965-73. PubMed ID: 16162497 [TBL] [Abstract][Full Text] [Related]
2. Analysis of the cooperative ATPase cycle of the AAA+ chaperone ClpB from Thermus thermophilus by using ordered heterohexamers with an alternating subunit arrangement. Yamasaki T; Oohata Y; Nakamura T; Watanabe YH J Biol Chem; 2015 Apr; 290(15):9789-800. PubMed ID: 25713084 [TBL] [Abstract][Full Text] [Related]
3. trans-Acting arginine residues in the AAA+ chaperone ClpB allosterically regulate the activity through inter- and intradomain communication. Zeymer C; Fischer S; Reinstein J J Biol Chem; 2014 Nov; 289(47):32965-76. PubMed ID: 25253689 [TBL] [Abstract][Full Text] [Related]
4. Roles of conserved arginines in ATP-binding domains of AAA+ chaperone ClpB from Thermus thermophilus. Yamasaki T; Nakazaki Y; Yoshida M; Watanabe YH FEBS J; 2011 Jul; 278(13):2395-403. PubMed ID: 21554542 [TBL] [Abstract][Full Text] [Related]
5. The molecular mechanism of Hsp100 chaperone inhibition by the prion curing agent guanidinium chloride. Zeymer C; Werbeck ND; Schlichting I; Reinstein J J Biol Chem; 2013 Mar; 288(10):7065-76. PubMed ID: 23341453 [TBL] [Abstract][Full Text] [Related]
6. M domains couple the ClpB threading motor with the DnaK chaperone activity. Haslberger T; Weibezahn J; Zahn R; Lee S; Tsai FT; Bukau B; Mogk A Mol Cell; 2007 Jan; 25(2):247-60. PubMed ID: 17244532 [TBL] [Abstract][Full Text] [Related]
7. Coupling of oligomerization and nucleotide binding in the AAA+ chaperone ClpB. Werbeck ND; Zeymer C; Kellner JN; Reinstein J Biochemistry; 2011 Feb; 50(5):899-909. PubMed ID: 21182296 [TBL] [Abstract][Full Text] [Related]
8. The chaperone function of ClpB from Thermus thermophilus depends on allosteric interactions of its two ATP-binding sites. Schlee S; Groemping Y; Herde P; Seidel R; Reinstein J J Mol Biol; 2001 Mar; 306(4):889-99. PubMed ID: 11243796 [TBL] [Abstract][Full Text] [Related]
9. Nucleotide binding and allosteric modulation of the second AAA+ domain of ClpB probed by transient kinetic studies. Werbeck ND; Kellner JN; Barends TR; Reinstein J Biochemistry; 2009 Aug; 48(30):7240-50. PubMed ID: 19594134 [TBL] [Abstract][Full Text] [Related]
10. Fusion protein analysis reveals the precise regulation between Hsp70 and Hsp100 during protein disaggregation. Hayashi S; Nakazaki Y; Kagii K; Imamura H; Watanabe YH Sci Rep; 2017 Aug; 7(1):8648. PubMed ID: 28819163 [TBL] [Abstract][Full Text] [Related]
11. Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE. Groemping Y; Klostermeier D; Herrmann C; Veit T; Seidel R; Reinstein J J Mol Biol; 2001 Feb; 305(5):1173-83. PubMed ID: 11162122 [TBL] [Abstract][Full Text] [Related]
12. Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity. Mogk A; Schlieker C; Strub C; Rist W; Weibezahn J; Bukau B J Biol Chem; 2003 May; 278(20):17615-24. PubMed ID: 12624113 [TBL] [Abstract][Full Text] [Related]
13. The N terminus of ClpB from Thermus thermophilus is not essential for the chaperone activity. Beinker P; Schlee S; Groemping Y; Seidel R; Reinstein J J Biol Chem; 2002 Dec; 277(49):47160-6. PubMed ID: 12351638 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of E. coli Hsp100 ClpB nucleotide-binding domain 1 (NBD1) and mechanistic studies on ClpB ATPase activity. Li J; Sha B J Mol Biol; 2002 May; 318(4):1127-37. PubMed ID: 12054807 [TBL] [Abstract][Full Text] [Related]
15. Visualizing the ATPase cycle in a protein disaggregating machine: structural basis for substrate binding by ClpB. Lee S; Choi JM; Tsai FT Mol Cell; 2007 Jan; 25(2):261-71. PubMed ID: 17244533 [TBL] [Abstract][Full Text] [Related]
16. Poly-L-lysine enhances the protein disaggregation activity of ClpB. Strub C; Schlieker C; Bukau B; Mogk A FEBS Lett; 2003 Oct; 553(1-2):125-30. PubMed ID: 14550559 [TBL] [Abstract][Full Text] [Related]
17. Coupling and dynamics of subunits in the hexameric AAA+ chaperone ClpB. Werbeck ND; Schlee S; Reinstein J J Mol Biol; 2008 Apr; 378(1):178-90. PubMed ID: 18343405 [TBL] [Abstract][Full Text] [Related]
18. A chaperone network for the resolubilization of protein aggregates: direct interaction of ClpB and DnaK. Schlee S; Beinker P; Akhrymuk A; Reinstein J J Mol Biol; 2004 Feb; 336(1):275-85. PubMed ID: 14741222 [TBL] [Abstract][Full Text] [Related]
19. Stability of the two wings of the coiled-coil domain of ClpB chaperone is critical for its disaggregation activity. Watanabe YH; Nakazaki Y; Suno R; Yoshida M Biochem J; 2009 Jun; 421(1):71-7. PubMed ID: 19351326 [TBL] [Abstract][Full Text] [Related]
20. Orientation of the amino-terminal domain of ClpB affects the disaggregation of the protein. Mizuno S; Nakazaki Y; Yoshida M; Watanabe YH FEBS J; 2012 Apr; 279(8):1474-84. PubMed ID: 22348341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]